AEROSPACE Advanced Composite Materials Selector Guide

ROTORCRAFT

DESIGN & PARTS

AIRCRAFT

Shirestin Unon

ULTRA-HIGH TEMPERATURE

ADHESIVES

WE CONTRIBUTE TO SOCIETY THROUGH **INNOVATIVE IDEAS, TECHNOLOGIES, AND PRODUCTS**

SPACE/SATELLITE

THERMOSER

SYNTACTOS

BULK MOLDI

COMPOSITE TOOLING

RADOMES

INTERIORS

MATERIALS TECHNOLOGY AND CAPABILITIES

Toray Advanced Composites is a global leader in the development and manufacture of a wide range of advanced composite material solutions for aerospace, satellite, communications, and high-performance industrial markets. Our goal is to increase our customers' advantage with our market-leading product portfolio, a world-class technical support team, and award-winning customer service.

Toray Advanced Composites operates five prepreg manufacturing sites globally, with three facilities in North America and two in Europe. Three of our facilities offer true carbon-free areas to serve the sensitive radome and communication industries with low dielectric constant and low-loss materials. Our major production sites operate aerospace-quality systems and are certified to ISO9001:2015 and/or AS9100D.

Toray Advanced Composites is unique in the industry, offering a broad spectrum of thermoplastic and thermoset prepreg systems, with particular expertise in high-performance thermoplastic composites (under the brand name Toray Cetex®).

Cetex

Photos courtesy of Airbus, AgustaWestland, Boeing, Cirrus, General Atomics, US Military, NASA and of the respective companies.

Star Star Star

COMPOSITE POLYMERS

Thermoplastics are polymers that soften upon heating, becoming formable at an elevated processing temperature (often above 200°C/392°F) and return to their solid form upon cooling. Process cycles of only minutes can be achieved, facilitating high-volume manufacturing with heating only taking a matter of seconds. Rapid-closing presses utilizing metal tooling at low pressure are used to preform/form composite material parts.

THERMOPLASTIC MATRICES

With more than 30 years of heritage, the Toray Cetex® family of thermoplastic composites, ranging through to the Polyaryletherketone (PAEK) family of polymers, are the materials of choice to take your project to new heights.

INTRODUCTION TO TORAY ADVANCED COMPOSITES

Materials Technology and Capabilities

THERMOSET MATRICES

Toray offers epoxy, cynate ester, bis-maleimide (BMI), and polyimide thermoset matrices. Thermosets offer room temperature part lay-up/forming followed by a cure cycle at an elevated temperature, typically 80-180°C (176-356°F). Curing is carried out by initiating a polymeric reaction under temperature and pressure through the cure cycle. Once thermosets are cured, they cannot be re-formed.

INNOVATION

The aerospace industry depends on innovations in new materials and processes from suppliers. Our strong customer focus on tailored systems, combined with our comprehensive laboratory and testing capabilities, allows for rapid development, customization, and database development. Our experience in thermoset and thermoplastic resins, various composite fibers, and part design allows us to rapidly innovate to customer needs. Recognized in the industry for providing optimized fiber and resin solutions, we deliver advanced customer-oriented products to the market.

YOUR GLOBAL PARTNER

Our state-of-the-art manufacturing facilities around the world allow Toray to efficiently supply composite materials to global customers.

Ongoing investments in facilities and personnel ensure production excellence to meet today's requirements and tomorrow's demand. Stop by and see for yourself. We welcome customer visits, and look forward to the opportunity to work with you on your next project.

- Thermoplastics: > Toray Cetex[®] Engineering Guide for Interiors—Thermoplastic Composites
 - Toray Cetex[®] Stamp Forming Processing Guide—Thermoplastic UD Tapes

Toray Advanced Composites

USA acquisition of Bryte Technologies —1999

USA Morgan Hill, new manufacturing facility —

USA acquisition of YLA, Inc. & CCS Composites, LLC for space prepregs and compression molded parts

USA & Canada acquisition of PMC/Baycomp for thermoplastics in industrial markets

UK acquisition of Amber Composites with leading positions in tooling, automotive, motorsport, and industrial markets

USA Morgan Hill, plant has doubled in size in < 10 years —

Introduction to Toray Advanced Composites

TABLE OF CONTENTS Aerospace Composite Materials Selector Guide

Introduction	8 - 9
Product Applications	10 - 11
Product Overview	12 - 15
SPACE, SATELLITE, & LAUNC	н
Introduction	16 - 17
Product Applications	18 - 20
Product Overview	21 - 25
RADOME ANTENNA SYSTEM	IS
Introduction	26 - 27
Product Applications	28 - 29
Product Overview	30 - 31
AIRCRAFT INTERIORS	
Introduction	32 - 33
Product Applications	34 - 35
Product Overview	36 - 37
COMPOSITE TOOLING PREPR	EGS
Introduction	38 - 39
Product Overview	40 - 41
COMPRESSION MOLDING & BULK MOLDING COMPOUND	S
Introduction	42 - 43
Product Overview	44 - 45
ULTRA-HIGH TEMPERATURE	
Introduction	46 - 47
Product Applications	48 - 49
Product Overview	50 - 51
CORE MATERIALS	
Honeycomb Core	52 - 53
Toray MicroPly™ Syntactics and Core	Splices 54 - 55

AEROSPACE PRODUCT SELECTOR

Introduction	56 - 57
Thermoset Prepregs Epoxy Cyanate Ester High-Temperature Polyimide and BMI	58 - 59 60 - 61 60 - 61
Thermoplastic Prepregs and Laminates Toray Cetex [®] Thermoplastic	62 - 63
Toray MicroPly™ Film Adhesives Epoxy Cyanate Ester	64 - 65 64 - 65
Toray MicroPly™ Surfacing Films Epoxy	64 - 65
Toray MicroPly™ Syntactics and Core S Epoxy Cyanate Ester Other Thermoset Matrices	plices 66 - 67 66 - 67 66 - 67
Resin Transfer Molding (RTM) Resins	68 - 69
Cyanate Ester	68 - 69
Epoxy Cyanate Ester Bulk Molding Compounds (BMC) Thermoset Epoxy Toray Cetex [®] Thermoplastic	68 - 69 68 - 69 68 - 69

AEROSPACE HERITAGE

Toray Advanced Composites is a leading provider of both thermoset and thermoplastic advanced composite materials to the aerospace industry. The world's leading aerospace programs rely on Toray's advanced composite materials.

Recognized for partnering in aerospace on emerging programs, and providing optimized fiber and resin solutions, we deliver more than materials. We're dedicated to outstanding customer service and technical support, helping you meet your timelines to ensure program success.

As your partner, we help navigate complex qualifications, provide a selection of optimized material forms, and can perform all necessary qualification and acceptance testing in-house.

WHY TORAY

- > Optimize manufacturing shop floor processes with out-ofautoclave/vacuum-bag-only (OOA/VBO) thermoset prepregs
- Maximize life-cycle performance of composite structures through improved part durability with Toray Cetex® thermoplastic prepregs, and toughened thermoset prepregs
- ▶ Minimize project risk with Toray's tailored technical and customer support

Otto Lilienthal

OUR OBJECTIVES

Optimize Maximize manufacturing life-cycle supply chain performance

V Minimize project risk

Aerospace Advanced Composites Materials Selector Guide

Toray provides complete composite material solutions for your structural applications. Our prepregs are available in uni-directional (UD) tape, slit tape, woven prepreg, and bulk molding compound (BMC) forms. Our Toray Cetex® thermoplastics are also available in ready to use reinforced thermoplastic laminates (RTL), custom oriented to the ply lay-up requested. Along with prepregs, the Toray MicroPly™ product line offers a complete set of compatible film adhesives, composite surfacing films, syntactics, and resins, as well as a full line of tooling prepregs.

For more product information, please use the following resources:

Search for the Toray TAC Product Selector App Store

www.toraytac.com Go to our online resource center for case studies and technical papers

9

Toray Cetex[®] thermoplastic composites provide impact resistance on lightweight leading edge wing applications, and are valued for their structural properties.

Toray epoxy adhesives and composite surfacing films, with and without lightning strike protection, serve multiple commercial aircraft applications.

A full range of Toray out-of-autoclave prepregs are ideal for structural applications, fairings, and secondary flight structures.

Toray high-temperature materials are used on the rear section of aircraft engines replacing titanium for weight savings. On the front of the jet engine, Toray Cetex[®] laminates with micro perforations absorb high-pitched turbine engine sounds.

Ļ

HIGH TEMPERATURE RESISTANT

On the engine nacelle, Toray TC350-1 and high-temperature thermosets are ideal solutions for thrust reversers, engine pylons, and nacelle cowlings.

Toray quartz or glass-based prepregs deliver low dielectric constant and low loss enabling the production of highly efficient and impact-resistant nose and satcom radomes.

Due to outstanding flame retardancy and low moisture **absorption**, Toray Cetex[®] thermoplastics are used in aircraft interiors for flooring, seating, stowage bins, and galleys. These materials are also impact resistant, easily cleaned, and exceptionally durable.

43
1
LOW FST VALUE

DURABLE

Advanced Thermoplastic and Thermoset Composite Products for Aerostructures

AEROSTRUCTURES Product Overview

1	THERMO	SET							₿
		RESIN MATRIX	DRY T _g onset	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	FREEZER Life # Months	00A/VB0	TOUGHEN
	BT250E-1	Ероху	125°C (257°F)	60 minutes at 121°C (250°F)	 MIL-R-9300 qualified Self-adhesive to core 	30	12	0	
	BT250E-6	Ероху	131°C (268°F)	2 hours at 127°C (260°F)	 FAA conformed database High-modulus system for rotor blades 	30	12	0	
	EX-1522	Modified Epoxy	180°C (356°F)	2 hours at 177°C (350°F)	 Low moisture absorption Excellent mechanical properties 	21	12		0
	TC250	Ероху	140°C (285°F) or 180°C (356°F) with post cure	60 minutes at 88°C (190°F), followed by 2 hours at 130°C (265°F) Optional post cure of 60 minutes at 177°C (350°F) for higher Tg	 NCAMP database on fabric version Good surfacing qualities Self-adhesive to core capability 	30	12	0	0
	TC275-1	Ероху	164°C (327°F) or 183°C (362°F) with post cure	6 hours at 135°C (275°F) Optional post cure of 2 hours at 177°C (350°F)	 Low moisture uptake Hot/wet T_g 136°C (277°F) Ideal system for large structures 	14	12	0	0
	TC275-1E NEW	Ероху	164°C (327°F) or 183°C (362°F) with post cure	6 hours at 135°C (275°F) Optional post cure of 2 hours at 177°C (350°F)	 Low moisture uptake Hot/wet T_g 136°C (277°F) Ideal system for large structures 	21	12	0	0
	TC350-1	Ероху	191°C (376°F)	2 hours at 177°C (350°F)	 Industry standard 177°C (350°F) epoxy Hot/wet T_g 160°C (320°F) Good CAI 32 ksi (221 MPa) 	45	12	0	0
	TC380 NEW	Ероху	201°C (394°F)	2 hours at 177°C (350°F)	 High CAI 42 ksi (289 MPa) Excellent open-hole compressive strength 45 ksi (310 MPa) Excellent hot/wet strength retention 	28	12	0	0
	RS-8HT	BMI	203°C (397°F) or 285°C (545°F) with post cure	2 hours at 204°C (400°F) followed by 6 hours at 250°C (482°F)	 Excellent high-temperature thermal stability Good moisture resistance Also available as an RTM resin 	30	6		0
	TC420	Cyanate Ester	177°C (350°F) or 348°C (658°F) with post cure	3 hours at 177°C (350°F). Optional post cure at 260°C (500°F)	 Excellent thermal stability for use on heatshields and supersonic leading edges Epoxy-like processing with T_g of BMI 	21	6	0	0
	RS-51	Polyimide AFRPE-4	366°C (690°F)	Call for cure details	 Ultra-high service temperature for jet engine applications 	10	6		

TORAY CETEX® THERMOPLASTIC							
	RESIN MATRIX	PEAK T _g	PROCESSING TEMPERATURE	KEY PRODUCT CHARACTERISTICS	WELDAB	TOUGHE	
TC1000 Premium	PEI	215°C (419°F)	315°C (600°F)	 OEM qualified Industry-leading mechanical performance Good chemical resistance 	0	0	
TC1225	Engineered PAEK	147°C (297°F) T _m 305°C (581°F)	325-350°C (615-662°F)	 NCAMP qualification in process Outstanding structural performance Compatible with PEEK for overmolding and welding 	0		
TC1100	PPS	90°C (194°F) T _m 280°C (536°F)	330°C (625°F)	 OEM qualified Microcrack free Low moisture absorption Ideal for leading edges, beams, clips, and floor panels 	0	0	
TC1320	PEKK	159°C (318°F) T _m 337°C (639°F)	371°C (700°F)	 OEM qualified Outstanding solvent and impact resistance Lower processing temperature material 	0	0	
TC1200	PEEK	143°C (290°F) T _m 343°C (649°F)	385°C (725°F)	 Continuous processing temperature Good high-temperature properties 	0	0	

TORAY MICROPLY™ FILM ADHESIVES & COMPOSITE SURFACING FILMS

						~	NED
	RESIN MATRIX	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	00A/VB(TOUGHE
TC263	Ероху	110°C (230°F)	2 hours at 121°C (250°F)	 High peel strength Ideal for metal or composite bonding 	14	0	0
TC235SF-1	Ероху	119°C (246°F)	60 minutes at 121°C (250°F)	 Excellent protective surface finishing film Available with embedded lightning strike foils Reduces shop floor finishing for productivity savings 	14	0	0
TC310	Ероху	157°C (315°F)	2 hours at 177°C (350°F)	Ideal composite bonding film adhesive	21	0	0
TC4015	Cyanate Ester	177°C (350°F) or 321°C (610°F) with post cure	2 hours at 177°C (350°F)	 Excellent high-temperature properties Compatible with TC420 	7	0	0

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the **Toray TAC Product Selector**

\$
<u>~</u>
-
-
5
Ξ.
_
er i
6
0
<u>~</u>
-
-

www.toraytac.com Go to our online resource center for case studies and technical papers

TORAY MICROPLY™ SYNTACTICS AND CORE SPLICES

						•	Z
	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	00A/VB(TOUGHE
EM-3	Ероху	~116°C (240°F)	60 minutes at 121°C (250°F)	 High-expansion film (8-10 x) 0.64 g/cc (40 pcf) density T_g estimated from base resin data 	14	0	0
TCF4035	Ероху	140°C (284°F)	3 hours at 130°C (265°F)	 Low-density film 0.64 g/cc (40 pcf) Compatible with TC250, may be post cured for higher Tg 	21	0	0
TCF4045	Ероху	180°C (356°F)	3 hours at 179°C (355°F)	 Density of 0.61 g/cc (38.5 pcf) Excellent low-dielectric syntactic film 	14	0	0
TCF4001	Cyanate Ester	177°C (350°F)	2 hours at 177°C (350°F) Optional post cure of 60-90 minutes at 232°C (450°F)	Low-density paste 0.38 g/cc (24 pcf)	14	0	
TCF4050	Cyanate Ester	176°C (349°F) or 232°C (450°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 60-90 minutes at 232°C (450°F)	 Expanding syntactic film/core splice Density of 0.28-0.55 g/cc (17-35 pcf) Compatible with TC420 prepreg system 	7	0	0
SF-4	BMI	295°C (563°F)	2 hours at 204°C (400°F), then 6 hours post cure at 250°C (452°F)	 Low-density expanding film 0.62 g/cc (39 pcf) Compatible with RS-8HT and other BMI systems 	14	0	

RTM RESINS

	RESIN MATRIX	DRY T _g onset	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	POT LIFE	00A/VB(TOUGHE
EX-1510	Cyanate Ester	193°C (380°F)	2 hours at 177°C (350°F)	 Low viscosity of 150 cPs at 25°C (77°F) 2-part system with 4-hour pot life 	4 hrs		
RS-50	Ероху	203°C (397°F)	2 hours at 177°C (350°F)	 Low minimum viscosity of 23 cPs 1-part system with 4-hour pot life 	4 hrs		0

World's First Thermoplastic Rear Pressure Bulkhead Featured products: **Foray Cetex® TC1100/PPS**

Cure Capable Mandrel for Aerospace Structures Featured products: **Foray AmberTool® HX42**

Thermoplastic Upper Spar for an Aircraft Engine Pylon Featured products: > Toray Cetex® TC1320/PEKK

Thermoplastic Affordable Primary Structures (TAPAS) 2 **Consortium** (published in Composites World)

AEROSTRUCTUR

Structural Thermoset Prepregs for Kopter Group Featured products: > Toray TC275-1 Toray BT250E-6

Airbus A400M Thermoplastic Ice Protection Plate Featured products: **> Toray Cetex® TC1100/PPS**

Hybrid Thermoplastic Tail Rudder Technology Demonstrator Featured products: > Toray Cetex® TC1100/PPS reinforced thermoplastic laminates (RTLs) MC1000 bulk molding compounds (BMCs)

Thermoplastic Composites Technology: A View from Europe (published in Composites World) Bringing thermoplastic manufacturability to maturity is the goal of the ThermoPlastic composites Research Center (TPRC)

SPACE, SATELLITE, & LAUNCH

OUR OBJECTIVES

Connecting the Furthering planet scientific understanding

Reducing **High reliability** weight

SPACE FLIGHT HEBITAGE

With more than 25 years of space flight heritage, Toray Advanced Composites is the undisputed leader in developing and manufacturing cutting-edge, high-reliability materials for the space market. Our products are found on most satellites, spacecraft, and planetary rovers launched from the Western world. No other materials company offers the pedigree, experience, or breadth of product knowledge to meet the demanding needs of the space, launch, and satellite industry.

In partnership with our customers and with a close eye to evolving market needs, we have developed a comprehensive product portfolio of industry-leading resin systems for use on high-modulus PAN and pitch carbon fiber and specialty fabrics, as well as standard reinforcements.

COMMERCIAL SATELLITES AND LAUNCH VEHICLES

We continue to develop and serve our long-standing customers, who are building ever larger telecommunications satellites to accommodate more powerful and sophisticated payloads - offering higher resolution, more deployable structures, and larger, more accurate reflectors.

Toray also offers a full range of products to meet the demands of today's heavy-lift commercial launch vehicles being utilized today to send high-value missions reliably into space.

SCIENCE AND EXPLORATION

Our next generation materials support science missions, going further than ever before to unlock the secrets of the universe. Tomorrow's spacecraft will journey to more aggressive,

Stephen Hawking

hotter, and colder environments, and with greater numbers of planetary rovers and landers. Toray's materials are also playing a key role in sending humans to Mars.

NFW SPACE

Today's rapidly emerging New Space market is bringing new opportunities to meet material demands for mass-produced satellite constellations, small launch-on-demand vehicles, and swarms of high-flying pseudo-satellite drones. New Space will bring internet connectivity, new science, and big data to billions more people.

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector App Store

www.toraytac.com/space Go to our online resource center for product data sheets and technical resources.

HEAT SINKS Composite plates and tubes are manufactured with Toray highly conductive pitch-based carbon fiber prepregs. These unique materials provide superior thermal conductivity to channel heat from electrical components. Toray prepreg systems for these applications are designed to withstand high temperatures while providing exceptional resistance to the effects of thermocycling.

REFLECTORS AND ANTENNAS Toray space flightapproved cyanate ester and epoxy systems utilize high-modulus carbon fiber and specialized weaves. These materials are designed to deliver low CTE on reflectors, antennas, and deployable structures over space temperature extremes.

PRECISION STRUCTURES Toray materials protect the payload during launch and resist moisture to prevent outgassing in orbit. Toray high-modulus PAN or pitch-based carbon fiber prepregs are utilized for strength, stiffness, and light weight. Structures made from Toray products, including benches for optics and instrumentation, withstand extreme conditions in space, including thermal cycling, atomic oxygen, and radiation.

18 Aerospace Advanced Composites Materials Selector Guide

SOLAR ARRAY, BOOMS, AND TRUSSES These satellite applications utilize Toray high-modulus carbon fibers with resins that provide low coefficients of thermal expansion (CTE), low coefficients of moisture expansion (CME), low outgassing, and radiation resistance.

LAUNCH VEHICLE Product Applications

BARREL FUSELAGE ASSEMBLIES, PAYLOAD SHROUDS, AND FAIRINGS

The latest generation of launch vehicles utilize Toray out-ofautoclave (OOA) processable prepreg systems for costcompetitive vehicle barrel assemblies, inner and outer stages, payload shrouds, and fairings for weight and cost savings.

toughened epoxies to provide high strength, low weight

MICROCRACK

LIGHTWEIG

STRUTS AND TUBES Toray exceptionally durable and microcrack-resistant thermosets deliver a lightweight, highstrength structure for landing leg assemblies, secondary tubes, and struts and conduits.

HIGH TEMPERATUR

HEATSHIELDS Toray high-temperature cyanate ester prepregs create lightweight, thermally stable structures.

LIGHTWEIGHT

HIGH TEMPERATURE RESISTANT

C

THERMOCYCLE STABILITY

SPACE, SATELLITE, & LAUNCH Product Overview

THERM	OSET PF	REPREGS EP	OXY				8	ITURE ION		
	RESIN MATRIX	DRY T _g onset	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUTGASSING, CTE/ CME OR HOT/WET DATA	00A/VB0	TOUGHEN	LOW MOS Absorpti	SPACE/ Satellite	LAUNCH
EX-1522	Modified Epoxy	180°C (356°F)	2 hours at 177°C (350°F)	 Excellent mechanical properties Good balance of properties between cyanate ester and epoxy Low Dk and DL 	TML 0.28 % CVCM 0.01 % WVR 0.16 % TML-WVR 0.12 %		0	0	0	
TC250	Ероху	140°C (285°F) or 180°C (356°F) with post cure	60 minutes at 88°C (190°F), followed by 2 hours at 130°C (265°F)	 NCAMP qualified Long out life of 60 days and the ability to post cure makes it ideal for large structures 	Wet T _g 125°C (257°F) Cured at 130°C (265°F)	0	0			0
RS-36 / RS-36-1	Ероху	181°C (358°F) 190°C (374°F)	90 minutes at 177°C (350°F)	 ESA qualified for solar array High toughness Low moisture absorption 	TML 0.4 % CVCM 0.01 % WVR 0.17 % TML-WVR 0.12 %	0	0	0	0	
TC275-1	Ероху	164°C (327°F) or 183°C (362°F) with 177°C (350°F) post cure	6 hours at 135°C (275°F) Optional post cure of 2 hours at 177°C (350°F)	 Ideal for large structure fabrication Low density Excellent toughness for impact resistance 	Wet T _g 136°C (277°F)	0	0	0	0	0
TC275- 1E NEW	Ероху	168°C (334°F)	6 hours at 135°C (275°F) Optional post cure of 2 hours at 177°C (350°F	 Long out time version of TC275-1 Allows construction of thick or larger composites structures OOA/VBO processable 		0	0	0	0	0
TC350-1	Ероху	191°C (376°F)	2 hours at 177°C (350°F)	 OOA/VBO processable Good hot/wet properties 	Wet T _g 160°C (320°F)	0	0	0		0
TC380 NEW	Ероху	204°C (399°F)	2 hours at 177°C (350°F)	 Extreme toughness for structural and cryogenic applications Excellent balance of CAI, OHC, and hot/wet properties 	TML 0.83 % CVCM 0.01 % WVR 0.75 %	0	0	0		0

THERM	OSET PI	REPREGS BN	/I			NED	SIT URE Tion	۳	
	RESIN MATRIX	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	00A/VB(TOUGHE	LOW MO Absorp	SPACE/ Satellit	LAUNCH
RS-8HT	BMI	203°C (397°F) or 285°C (545°F) with post cure	2 hours at 204°C (400°F) followed by 6 hours at 250°C (482°F)	 Excellent elevated temperature performance Good moisture resistance 			0		0

CRYOTANKS Launch vehicle cryotanks utilize Toray tanks.

SPACE, SATELLITE, & LAUNCH

Product Overview

THERMOSET PREPREGS CYANATE ESTER HENED OUTGASSING, CTE/ RESIN CURE TIME AND **KEY PRODUCT CHARACTERISTICS** DRY T_g ONSET CME OR HOT/WET MATRIX TEMPERATURE ΠΔΤΔ TML 0.18 % 0 0 0 EX-1515 Cyanate 121°C (249°F) 3 hours at Low density or 174°C 121°C (250°F) Resistant to microcracking CVCM 0.01 % Ester (345°F) with Optional ► Low residual stress with CTE 61 ppm/°C post cure post cure of 121°C (250°F) cure 2 hours at 177°C (350°F) 0 0 0 TC410 Cyanate 112°C (234°F) 3 hours at ► Low CTE 58.4 µm/m/°C TML 0.29 % or 181°C 121°C (250°F) > Extremely low CME 1205 CVCM < 0.01 % Ester (358°F) with Optional post µm/m/% WVR 0.17 % post cure cure at Ideal system for stable **TML-WVR 0.12 %** 177°C (350°F) structures BTCy-1A Cyanate 185°C (365°F) 2 hours at > Tough CTE 77 ppm/°C 0 0 0 Ester or 207°C 177°C (350°F) ► High T_g (405°F) with Optional post post cure cure of 60 minutes at 204°C (400°F) RS-3/ Cyanate 191°C (375°F) 2 hours at Extensive qualification portfolio TML 0.22 % 0 0 0 0 RS-3C Ester or 254°C 177°C (350°F) Low CTE, CME CVCM 0.01 % (490°F) with Optional post High stability cure of 60 **•** RS-3C is controlled-flow post cure minutes at version 232°C(450°F) TML 0.41 % Cyanate 176°C (349°F) 3 hours at • Good resistance to 0 0 0 0 0 TC420 CVCM < 0.01% or 348°C 177°C (350°F) Ester microcracking (658°F) with Optional post > Capable of high-temperature WVR 0.28% service CTE 55 ppm/°C post cure cure at 260°C (500°F) Ideal for heat shield and ablative applications

RTM RESINS

							l ≌ E I	끧	
	RESIN	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	00A/VB(TOUGHE	LOW MO Absorp	SPACE/ SATELLIT	LAUNCH
EX-1545	Cyanate Ester	173°C (345°F)	2 hours at 177°C (350°F)	 Toughened resin system with low viscosity of 140 cPs at 43°C (110°F) Long pot life for complex parts 				0	
RS-16	Cyanate Ester	167°C (332°F) or 231°C (448°F) with post cure	2 hours at 135°C (275°F) followed by 2 hours at 150°C (300°F)	 Low-temperature cure resin system Post curable for higher T_g 				0	
EX-1510	Cyanate Ester	193°C (380°F)	2 hours at 177°C (350°F)	 Low room temperature viscosity of 150 cPs Post curable for higher T_g 			0		

TORAY	TORAY MICROPLY™ FILM ADHESIVES EPOXY						SITURE TION	ш	
	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	00A/VB(TOUGHE	LOW MO Absorp	SPACE/ SATELLI ⁻	LAUNCH
RS-15H	Ероху	99°C (211°F)	6 hours at 93°C (200°F) Alternate cures are available	Low-temperature curing adhesive	0	0		0	
TC263	Ероху	110°C (230°F)	2 hours at 121°C (250°F)	 High peel strength Ideal for metal or composite bonding 	0	0		0	0
TC310	Ероху	157°C (315°F)	2 hours at 177°C (350°F)	Ideal composite bonding film adhesive	0	0		0	0

TORAY	FORAY MICROPLY™ FILM ADHESIVES CYANATE ESTER)SITURE TION	Ë	
	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	00A/VB	TOUGHE	LOW MC ABSORF	SPACE/ SATELLI	LAUNCH
EX-1516	Cyanate Ester	126°C (258°F)	5 hours at 121°C (250°F)	Compatible with Toray EX-1515 prepreg		0	0	0	
RS-4A	Cyanate Ester	195°C (383°F) or 238°C (460°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 1.5-2 hours at 232°C (450°F)	 Moisture resistant 		0	0	0	
EX-1543	Cyanate Ester	191°C (376°F) or 211°C (412°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 2 hours at 204°C (400°F)	 Compatible with 177°C (350°F) curing cyanate ester prepregs Low shrinkage Low outgassing 			0	0	
TC4015	Cyanate Ester	176°C (349°F) or 321°C (610°F) with post cure	2 hours at 177°C (350°F) Optional post cure of > 60 minutes at 232°C (450°F)	 Excellent high-temperature properties Compatible with TC420 	0		0	0	0

TORAY N	ORAY MICROPLY™ SYNTACTICS EPOXY						SITURE TION	щ	
	RESIN MATRIX	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	00A/VBC TOUGHE LOW MO ABSORP		LOW MO Absorp	SPACE/ Satelun	LAUNCH
EM-3	Ероху	~116°C (240°F)	60 minutes at 121°C (250°F)	 High expansion (8-10 x) 0.64 g/cc (40 pcf) density T_g estimated from base resin data 				0	
TCF4035	Ероху	140°C (284°F)	3 hours at 130°C (265°F)	 Low density 0.64 g/cc (40 pcf) Compatible with TC250, may be post cured for higher T_g 	0	0			0

SPACE, SATELLITE, & LAUNCH

SPACE, SATELLITE, & LAUNCH Product Overview

FORAY N	DRAY MICROPLY™ SYNTACTICS CYANATE ESTER							
	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	00A/VBC	TOUGHEI	LOW MO ABSORP	
CF4001	Cyanate Ester	176°C (349°F)	2 hours at 177°C (350°F) Optional post cure of 60-90 minutes at 232°C (450°F)	► Low density 0.38 g/cc (24 pcf)	0			
CF4050	Cyanate Ester	176°C (349°F) or 232°C (450°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 60-90 minutes at 232°C (450°F)	 Expanding syntactic film/core splice Density of 0.28-0.55 g/cc (17-35 pcf) Compatible with TC420 prepreg system 	0	0		
M-5A	Cyanate Ester	204°C (400°F)	2 hours at 177°C (350°F) Optional post cure of 60-90 minutes at	Expansion ratio of 4 x	0			

TORAY MICROPLY™ SYNTACTICS OTHER THERMOSET MATRICES

232°C (450°F)

						NED	LION	۳	
	RESIN MATRIX	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	00A/VB(TOUGHE	LOW MO Absorp	SPACE/ SATELLI	LAUNCH
SF-4	BMI	295°C (563°F)	2 hours at 204°C (400°F), then 6 hour post cure at 250°C (452°F)	 Low density 0.62 g/cc (39 pcf) Compatible with RS-8HT and other BMI systems 	0			0	

BMC THERMOSET EPOXY

						PE	[등 문]	<u>ب</u>	
	RESIN MATRIX	DRY T _g onset	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	00A/VB	TOUGHE	LOW MO Absorp	SPACE/ SATELLIT	LAUNCH
MS-1A	Ероху	164°C (327°F)	15-30 minutes at 138°C (280°F) followed by post cure of 1-2 hours at 177°C (350°F)	 Chopped fiber epoxy BMC with high-modulus fiber 				0	0
MS-1H	Ероху	191°C (375°F)	15-30 minutes at 138°C (280°F) followed by post cure of 1-2 hours at 177°C (350°F)	 Chopped fiber epoxy BMC with intermediate-modulus fiber 				0	
MS-4H	Ероху	191°C (375°F)	15-30 minutes at 138°C (280°F) followed by post cure of 1-2 hours at 177°C (350°F)	 Chopped fiber epoxy BMC with high- strength (standard-modulus) fiber 				0	0

TORAY	ORAY CETEX® BMC THERMOPLASTIC					LITY/ Iess	ISITURE TION	ш	
	RESIN MATRIX	DRY Tg ONSET	PROCESSING TEMPERATURE	KEY PRODUCT CHARACTERISTICS	00A/VB(DURABIL TOUGHN	LOW MO Absorp	SPACE/ SATELLI ⁻	LAUNCH
MC1100	PPS	90°C(194°F)	330°C (625°F)	 PPS based BMC Fire retardant 		0	0	0	0
MC1200	PEEK	143°C (290°F)	385°C(725°F)	 PEEK based BMC Fire retardant 		0	0	0	0

0

0

0

LEARN MORE ABOUT THE USE OF OUR PRODUCTS IN SPACE Find this case study and more at www.toraytac.com/success-stories

READ OUR PUBLISHED ARTICLES ON PARTNERSHIPS AND PROJECTS

Find this article and more at **www.toray**tac.com/literature

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the **Toray TAC Product Selector**

- Learn about Airborne's Advanced Solar Array designed by Airbus Defence and Space for use in future ESA missions
- **Solar Arrays for Next Generation Satellites** Featured products: > Toray RS-36

ENABLING SMAP MISSION SUCCESS

- Learn about Northrop Grumman's deployable reflection dish, used in this NASA launch at **www.toray**tac.com/company/ news/2015
- Deployable Space Structure for SMAP Made Using Toray **Cetex**[®] (published in Composites World)

www.toraytac.com/space Go to our online resource center for case studies and technical papers

Olivier Thevskens

OUR OBJECTIVES

Highly reliable The right system materials performance for complex communication systems

Connecting and protecting people

Carbon-free production line (Langley Mill - UK)

mechanical, and high-temperature applications. TORAY OFFERS:

- A strong commitment to innovation and technical support
- for the demands of this unique sector

and conductive particles, using state-of-the-art processing technology.

WORLD-LEADING RADOME COMPOSITE MATERIALS

Toray's advanced composite materials are used with confidence in military and commercial aircraft, ship, rail, and ground-based systems, including conformal or "patch" antennas, satellite RF components, microwave transparent,

and radar absorbing structures.

Popular reinforcements such as E-glass, S-glass, quartz, aramid, and HDPE are fully compatible with Toray's advanced resin systems and can be supplied as prepregs, adhesive, and syntactics to satisfy the most demanding electrical,

- **•** Low dielectric constant and low-loss materials for industry leading electromagnetic performance
- > An extensive materials database of mechanical and electrical properties (0-60 GHz)
- Carbon-free production facilities in both the USA and the UK

Toray Advanced Composites is the world's leading supplier of advanced composite materials for the high-performance radome and antenna industry. Our advanced composite radome materials are made in clean, controlled facilities, isolated from carbon

> Clear satcom and ground to air communication are essential to commercial and military aircraft operations. In flight, it is not uncommon for a military aircraft to operate more than fifteen antennas with multiple functions including weather detection, satcom, ground communication, ground imagery, target acquisition, fire control, jammer pods, altitude monitoring, etc. With the largest database from 10-60 GHz, Toray materials possess the necessary attributes for the fabrication of the lightweight, most effective radome design.

TREND TOWARD HIGHER FREQUENCIES

Increasingly, antenna systems are multifunctional, operating "broadband" over a number of different frequencies, with a trend toward the higher frequency bands. Not only are the lower frequency bands simply filling up, but operating at a higher frequency or over multiple frequencies allows highspeed transmission of "big data." Airlines can send and transmit data enabling the "connected aircraft" in real time. Passenger streaming of video onboard is now feasible with Ku, K, and Ka-band communications.

Increased antenna system sophistication drives complexity in the radome design, requiring C-sandwich and B-sandwich constructions for Wi-Fi radomes, necessitating higherperformance advanced composite materials. Toray materials are widely used in these sophisticated high-energy applications delivering both electrical effectiveness and protection of sensitive electronics.

To learn more about the fabrication of the General Dynamics LiveTV multiband satcom radome used by commercial airlines to bring Wi-Fi to passengers, read the online article titled "Composites aid connectivity for commercial aircraft" at www.toraytac.com/ literature

What is sure is that the satellite view of our world and its evolution is now a common reality.

RADOME ANTENNA SYSTEMS

Product Applications

SATCOM ANTENNA RADOME SYSTEM Toray materials in satcom deliver high bandwidth clarity while providing excellent impact resistance to bird strike events. These material systems are utilized in almost all commercial aircraft broadband satcom applications and are relied upon in military aircraft and UAVs to deliver high-frequency signals for real-time high bandwidth communication.

SIGNAL CLARITY

10W10SS

NOSE RADOME Toray products meet the cost targets and impact resistance necessary in protection of ground to air communications for commercial aircraft navigation.

A Radome (radar dome) is a cover designed to protect an antenna system from the environment, while providing aerodynamics, lightning strike protection, and stealthy attributes. Selecting the right composite materials are crucial to maintaining the symbiotic performance of the radome antenna system that Toray products deliver.

RADOME ANTENNA SYSTEMS Toray materials are available in several configurations from epoxy/glass to cyanate/quartz to optimize the needs specific to various antennas positioned over several parts of an aircraft body including conformal and patch antenna systems.

> **NOSE RADOME** of the military aircraft; high frequency for fire control; electronic jamming systems, providing supersonic aerodynamics; stealthy attributes; lightning strike protection.

LOW DIELECTRIC

29

RADOME ANTENNA SYSTEMS Product Overview

TORAY	MICRO		Material at 10 GHz			ED		
	RESIN TYPE	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	DIELECTRIC CONSTANT (D _k)	LOSS TANGENT (DF)	00A /VBC	TOUGHEN
SF-5	Cyanate Ester	193°C (380°F) or 254°C (490°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 2 hours at 232°C (450°F)	 Density of 0.61 g/cc (38 pcf) Low dielectric constant and loss Compatible with Toray RS-3 	1.70*	0.004		
TCF4045	Ероху	180°C (356°F)	3 hours at 179°C (355°F)	 Density of 0.61 g/cc (38.5 pcf) Good high-temperature properties 	1.57	0.008	0	0
TCF4035	Ероху	140°C (284°F)	3 hours at 130°C (265°F)	 Low density 0.64 g/cc (40 pcf) Compatible with TC250, may be post cured for higher Tg 	1.94	0.018	0	0
TCF4050	Cyanate Ester	176°C (349°F) or 232°C (450°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 60-90 minutes at 232°C (450°F)	 Density of 0.28-0.55 g/cc (17-35 pcf) Expanding 2-4 x Compatible with TC420 prepreg system 	N/A	N/A	0	0

* SF-5 tested at 18 GHz

TORAY MICROPLY™ FILM ADHESIVES

TORAY	MICRO	Material at 10 GHz			8			
	RESIN TYPE	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	DIELECTRIC CONSTANT (D _k)	LOSS TANGENT (DF)	00A/VB0	TOUGHEN
EX-1516	Cyanate Ester	126°C (258°F)	5 hours at 121°C (250°F)	Compatible with Toray EX-1515 prepreg	2.6 - 2.7	0.005 - 0.006	0	0
EX-1543	Cyanate Ester	191°C (376°F) or 211°C (412°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 2 hours at 204°C (400°F)	 Low-shrinkage cyanate ester film adhesive Low outgassing 	2.72	0.009	0	0
TC310	Ероху	157°C (315°F)	2 hours at 177°C (350°F)	Ideal composite bonding film adhesive	3.06	0.013	0	0
TC263	Ероху	110-115°C (230-239°F)	2 hours at 121°C (250°F)	 High peel strength Ideal for metal or composite bonding 	2.97	0.017	0	0
RS-4A	Cyanate Ester	195°C (383°F) or 238°C (460°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 1.5-2 hours at 232°C (450°F)	 Moisture-resistant cyanate ester film adhesive 	N/A	N/A	0	0
TC4015	Cyanate Ester	176°C (349°F) or 321°C (610°F) with post cure	2 hours at 177°C (350°F) Optional post cure for > 60 minutes at 232°C (450°F)	 Excellent high-temperature properties Service temperature of 232°C (450°F) after post cure Compatible with TC420 	N/A	N/A	0	0

1	FORAY	MICROP	Mater 10 (8				
RESIN TYPE DRY T _g ONSET				CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	DIELECTRIC CONSTANT (D _k)	LOSS TANGENT (DF)	00A/VB0	TOUGHEN
	EX-1541	Cyanate Ester	227°C (441°F) or 240°C (464°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 2 hours at 232°C (450°F)	 Density of 0.16-0.38 g/cc (10-24 pcf) Good structural properties Low dielectric constant and loss 	1.32	0.009		
	TCF4001	Cyanate Ester	176°C (349°F)	2 hours at 177°C (350°F) Optional post cure of 60-90 minutes at 232°C (450°F)	 Low density 0.35-0.42 g/cc (22-26 pcf) Mechanical properties achieved through 00A/VB0 processing 	1.55	0.012	0	

THERMO	SET PR		Quartz la 10 (minate at GHz	Ő	INED		
	Resin type	DRY Tg ONSET	Cure time and temperature	KEY PRODUCT CHARACTERISTICS	DIELECTRIC CONSTANT (D _v)	LOSS TANGENT (DF)	00A /VE	TOUGH
BTCy-2	Cyanate Ester	191°C (375°F)	1.5 hours at 177°C (350°F)	 Toray's lowest dielectric loss prepreg Ideal for high-energy radomes 	3.28	< 0.001		
BTCy-1A	Cyanate Ester	185°C (365°F) or 207°C (405°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 60 minutes at 204°C (400°F)	 Toughened version of BTCy-1 Low-void content with lower pressure cures Ideal for radome applications 	3.33	0.001		0
BTCy-1	Cyanate Ester	190°C (374°F) or 238°C (461°F) with post cure	90 minutes at 177°C (350°F) Optional post cure of 2 hours at 232°C (450°F)	 Low moisture absorption Low dielectric constant and loss 	2.7-2.8 at 18 GHz	0.003		
EX-1515	Cyanate Ester	121°C (249°F) or 174°C (345°F) with post cure	3 hours at 121°C (250°F) Optional post cure of 2 hours at 177°C (350°F)	 Epoxy-like processing and handling 121°C (250°F) cure for low residual stresses Post curable for higher Tg 	3.20	0.004		0
BT250E-1	Ероху	125°C (257°F)	60 minutes at 121°C (250°F)	 MIL-R-9300 qualified BT250E-1FR is the flame retardant version 	3.26	0.008	0	
RS-3/ RS-3C	Cyanate Ester	191°C (375°F) or 254°C (490°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 60 minutes at 232°C (450°F)	 Low dielectric constant and loss Toray RS-3C is a flow modified version 	3.19	0.009	0	0
TC420	Cyanate Ester	177°C (350°F) or 348°C (658°F) with post cure	3 hours at 177°C (350°F) Optional post cure at 260°C (500°F)	 Excellent thermal stability Epoxy-like processing with T_g of BMI 	3.39	0.009	0	0
EX-1522	Modified Epoxy	180°C (356°F)	2 hours at 177°C (350°F)	 Low moisture absorption Low dielectric constant and loss 	3.36	0.011		0
TC250	Ероху	140°C (285°F) or 180°C (356°F) with post cure	60 minutes at 88°C (190°F), followed by 2 hours at 130°C (265°F) Optional post cure of 60 minutes at 177°C (350°F) for higher Tg	 Highly toughened system Post curable for higher T_g 	3.49	0.012	0	0
RS-8HT	BMI	203°C (397°F) or 285°C (545°F) with post cure	2 hours at 204°C (400°F) followed by 6 hours at 250°C (482°F)	 Excellent high-temperature thermal stability Good moisture resistance 	3.49	0.014		
TC522 NEW	Modified Epoxy	189°C (372°F)	2 hours at 180°C (356°F)	 Outstanding compression after impact Low dielectric constant and loss Outstanding hot/wet properties 	3.33	0.004	0	0

nate loss tangent at 10 GHz using AS

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector

www.toraytac.com/radomes Go to our online resource center for case studies and technical papers

OME ANTENNA Systems

AIRCRAFT INTERIORS Introduction

Cetex®

SHAPING THE FUTURE OF COMMERCIAL AND CORPORATE AIRCRAFT INTERIOR COMPOSITES

Toray Advanced Composites offers market-leading fire-retardant advanced composites for the aircraft interiors industry. Across the industry, experts use Toray lightweight composite materials in a wide variety of aerospace interior applications to maximize mechanical durability, eliminate secondary operations, and deliver optimal FST safety.

The Toray Cetex[®] brand of differentiated reinforced

thermoplastic laminates (RTL) and uni-directional (UD) tapes are used in a wide variety of aircraft interior applications, ranging from flooring and cabin seating, to stowage bins and galleys. Thermoplastic composites, reinforced with glass or carbon fibers provide:

- Extremely low FST and OSU properties (OSU < 25/25)</p>
- ▶ High-quality surface finishes, substantially reducing the need for filling and sanding before application of decorative trims or sublimation printing
- Excellent moisture resistance leading to improved durability
- Very tough surfaces for improved impact and wear performance, enabling long-term durability
- ▶ Fast manufacturing cycles, providing press forming in minutes
- ▶ Part count reduction: Overmolding thermoplastics enables consolidation of parts and integration of mechanical fixtures
- Component coloring: An option to deliver "base color" for applications

LOW EST VALUE SMOOTH SUBEACE MOISTURE RESISTANT IMPACT RESISTANT

Tailored to your application needs, Toray Cetex[®] laminates are consolidated as a single or multi-ply construction to maximize functionality. The RTL semi-finished product incorporates tailored fiber lay-ups, color, and a surface finish ready for service.

Donald Burr

OUR OBJECTIVES

Reduce weight Good durability Excellent FST performance

Improve costeffectiveness

- Toray Cetex[®] TC925 FST Polycarbonate (PC) resins provide a cost-effective solution that combines strong FST and OSU results with excellent impact performance.
- Toray Cetex[®] TC1000 Polyetherimide (PEI) resins provide optimum FST and OSU performance, coupled with superior chemical resistance and ideal secondary operation compatibility (welding, jointing, and painting).
- **Toray Cetex**[®] **TC1100** Polyphenylene Sulfide (PPS) provides outstanding solvent resistance for structural applications and ideal FST performance.
- Toray Cetex® TC1225 Polyaryletherketone (PAEK) resin, (part of PEEK family) offers outstanding structural and thermal performance and compatibility to PEEK for injection overmolding and welding.
- Materials can be provided as prepreg rolls or consolidated laminates (RTL) with a format of 3.66 m x 1.22 m (12' x 4')
- For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector Ann Store

www.toraytac.com/interiors Go to our online resource center for product data sheets and technical resources.

AIRCRAFT INTERIORS Product Applications

STORAGE BINS In an industry where weight and impact performance is paramount, Toray Cetex[®] is the ultimate solution. Exceptionally durable and lightweight for hardwearing bin surfaces and linings, we also offer an embedded color, eliminating secondary painting and finishing requirements.

DURABLE CO

CABIN LININGS Offering high impact resistance and exceptional durability, Toray Cetex[®] offers near perfect demold performance, maximizing efficiency for trim by minimizing post-processing (sand/sweep) operations.

CARGO LININGS With excellent FST performance and exceptional durability, Toray Cetex[®] thermoplastics offer near-perfect demold performance, maximizing efficiency for large surfaces by minimizing post-processing (sand/ sweep) operations.

SERVICE CARTS Toray Cetex[®] thermoplastics are the ultimate solution in an industry where weight and impact performance are paramount. Exceptionally durable and lightweight for hard-wearing cart surfaces, graphics can also be sublimated into the surface, eliminating secondary painting and finishing requirements.

DUCTING For ultimate flow rate performance, Toray Cetex[®] thermoplastics offer the lowest porosity levels in the lightest materials available. Used in low-pressure systems across the world, our laminates are rolled and seam welded for maximum efficiency.

GALLEYS High-volume and wear applications such as galleys and dividers demand resilient low-maintenance performance. With Toray Cetex[®] thermoplastics in-color and high moisture barrier technology, your workspace now has new possibilities.

SEAT STRUCTURES Capable of fast manufacturing cycles, Toray Cetex® thermoplastics are ideal for high-volume parts such as seat pans, back panels, and arm rests. Materials can also be overmolded with features for process improvement and design integrity. Braided thermoplastic slit tapes are ideal for seat frames and tubular structures.

CEILING LININGS Lightweight and stiff, Toray Cetex[®] thermoplastics offer near-perfect demold performance, maximizing efficiency for large surfaces by minimizing postprocessing (sand/sweep) operations.

FLOORING Manufactured in high volumes and prone to abuse, aircraft flooring demands exceptional resilience. Our hybrid system combines the best of lightweight thermoplastic and thermoset technology to deliver exceptional durability and longer service life, withstanding carpet changes without surface degradation.

AIRCRAFT INTERIORS

Product Overview

THERMOSET RESIN **CURE TIME AND** DRY T_a ONSET **KEY PRODUCT CHARACTERISTICS** MATRIX TEMPERATURE E721-FR Epoxy 120°C (248°F) 60 minutes at Fire retardant under FAR 25.853 Appendix F 0 0 120°C (248°F) - vertical burn material test criteria (ii) ► Core bondable TC264-1 Epoxy 124°C (255°F) 90 minutes Flame retardancy applications e.g., ducting, 0 0 0 at 118-127°C decorative enclosures, and composite (245-260°F) panel assemblies BT250E-1FR Epoxy 125°C (257°F) 60 minutes at > Self-adhesive to honeycomb and foam core 0 0 MIL-R-9300 121°C (250°F) • Outstanding surface finish with OOA (BT250E-1)

TORAY CETEX® THERMOPLASTIC

					AR	ΕS	4 F	LIN:	
	RESIN MATRIX	PEAK T _g	PROCESSING TEMPERATURE	KEY PRODUCT CHARACTERISTICS	SECOND	DURABII Toughn	CHEMIC RESISTA	0EM QUALIFIO	
TC925 FST	PC	153°C (307°F)	260°C (500°F)	 Good FST performance, OSU (< 25/25) White color option for visual aspect Value based solution 	0	+ +	+		
TC1000 Premium	PEI	215°C (419°F)	315°C (600°F)	 Excellent FST performance, OSU (< 15/15) Qualified to OEM specifications 	0	++++	++++	ABS 5036 ABS 5814	
TC1000 Design	PEI	215°C (419°F)	315°C (600°F)	 Excellent FST performance, OSU (< 15/15) Ideal for customer qualified design programs Broader color palette and range of textures 	0	+ +	+ +		
TC1100	PPS	90°C (194°F) T _m 280°C (536°F)	320°C (608°F)	 Achieves 35/35 for OSU performance Outstanding solvent resistance for structural applications High impact resistance Ideal for beams and floor panels 		+ +	+ + +	ABS 5045 ABS 5222 MEP 15-052	
TC1225	PAEK	147°C (297°F) T _m 305°C (581°F)	325-350°C (615-662°F)	 Outstanding structural and thermal performance Compatibility to PEEK for injection overmolding and welding 	0	+ + +	+ + +		

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector App Store

www.toraytac.com/interiors Go to our online resource center for case studies and technical papers

1

ORAY MI	CROPL	Y™ FILM A	DHESIVES			LITY/ IESS	AL NT	CATION
	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	00A/VB(DURABI	CHEMIC. RESISTA	0EM QUALIFI
TC263	Ероху	110°C (230°F)	2 hours at 121°C (250°F)	 High peel strength Ideal for metal or composite bonding 	0	0	0	

NOMEX® HONEYCOMB* AEROSPACE GRADE

	CONFIGURATIONS CELL SIZE & DENSITY	SHEET SIZE	KEY PRODUCT CHARACTERISTICS
ANA-3.2-29	3.2 mm 29 kg/m ³	1250 x 2500 mm	Fire resistant and self-extin
ANA-3.2-48	3.2 mm 48 kg/m ³	1250 x 2500 mm	 High-temperature strength High strength-to-weight rate
ANA-3.2-64	3.2 mm 64 kg/m ³	1220 x 2440 mm	 Nomex[®] paper sheets are of
ANA-4.8-48(0X)	4.8 mm 48 kg/m ³	1250 x 2500 mm	with a high-modulus pheno

Nomex[®] is a registered trademark of E.I du Pont de Nemours and Company.

* Cut to customer thickness specifications +/- 0.125 mm. Offered from Langley Mill, UK. Additional grades can be sourced upon request, subject to minimum order quantities.

For additional honeycomb core grades please refer to our core materials on page 53 of our Aerospace Advanced Composite Materials Selector Guide.

HYBRID PANEL SOLUTION

Toray Cetex® TC1000 can also be supplied as part of a patented hybrid panel solution, benefiting from the surface properties of the Reinforced Thermoplastic Laminate (RTL) capping a traditional Toray thermoset epoxy prepreg/Nomex® honeycomb core structure.

- nguishing to FAR 25.853
- up to 180°C (356°F)
- tio and easily formable to shape
- coated and bonded together
- olic resin

COMPOSITE TOOLING PREPREGS

Introduction

AmberTool°

TOOLING REINVENTED

The increased use of composites materials is driving the need for more advanced composite tooling solutions. Part manufacturers are demanding tools with longer life and tighter tolerances while pushing for more efficient production methods. The market demands a trusted technology partner that can provide world-class innovation, manufacturing, and service.

With more than 20 years of pedigree in demanding tooling applications, the Toray AmberTool[®] collection of prepregs comprised of the HX, HXR, and TC series, is sold globally by a proven team of tooling experts. Our comprehensive range of prepregs for aerospace applications cure from 50°C (122°F) while delivering T_g properties up to 213°C (415°F). These materials are available on a wide range of reinforcements, allowing our customers to have complete tool design freedom and flexibility.

COMPLETE TOOL DESIGN FREEDOM

Toray AmberTool® composite tooling prepregs allow high precision for molded and machined tooling applications with a superior degree of accuracy. We support our products globally, offering customers a complete technical support service including tailored training courses.

INDUSTRY-LEADING COMPOSITE TOOLING EXPERIENCE

Master and surface coat application

- Compatible with high-performance epoxy paste and block master patterns
- Specialized sealing and release agent recommendations
- Excellent surface finish generation

Full tooling delivery solutions

- Custom cutting solutions within Europe
- ► Fast delivery solutions for standard materials
- Wide range of carbon and glass reinforcements with curing temperatures as low as 40°C (104°F) and T_g's up to 213°C (415°F) (after post cure)
- Surface machinable for final accuracy
- Carbon and glass backing structures

irtesy of The National Composites Centre, U

Experienced technical support

- Proven processing procedures and full tooling processing guide available
- Tailored training courses offered
- Specialized tooling knowledge on surface treatments and advanced experience in mold heating applications
- Mold life-cycle maintenance solutions
- ▶ New materials research, assuring health and safety compliance

COMPOSITE TOOLING PREPREGS Product Overview

TORAY AMBERTOOL® COMPOSITE TOOLING PREPREGS

							9	_ ≤	2	F	
	RESIN	T _g (ONSET)*1	MIN CURE TEMP	TYPICAL CURE TIME AND TEMPERATURE*2	OUT LIFE	KEY PRODUCT CHARACTERISTICS	AEROSPA	INDUSTR	MOTORS	AUTOMO	ENERGY
HX32-1* ³ NEW	Ероху	162°C (323°F)	65°C (149°F)	12 hours at 70°C (158°F)	30 days	 Long out life for large applications 		0			0
HXR56* ³ NEW	Ероху	185°C (365°F)	40°C (104°F)	8.5 hours at 50°C (122°F)	50 hours	 Quasi-isotropic two-layer product for rapid lamination 		0	0	0	0
HX56* ³	Ероху	185°C (365°F)	40°C (104°F)	8.5 hours at 50°C (122°F)	60 hours	Improved handleability		0	0	0	0
HX50*3	Ероху	190°C (374°F)	40°C (104°F)	8.5 hours at 50°C (122°F)	60 hours	Excellent surface finish		0	0	0	
HX42	Ероху	200°C (392°F)	50°C (122°F)	8 hours at 60°C (140°F)	5 days	Proven system for aerospace	0	0	0	0	
HX40	Ероху	203°C (397°F)	50°C (122°F)	12 hours at 65°C (149°F)	8 days	Large tooling applications	0	0			0
TC40*4	BMI	213°C (415°F)	182°C (360°F)	6 hours at 182°C (360°F)	14 days	High service temperature	0				

*1 after post cure *2 followed by post cure | Sourced from: *3 Europe *4 North America

NEW PRODUCTS

Toray AmberTool® HXR56 is the latest innovation from our heritage range of composite tooling prepregs. The new Toray AmberTool® HXR series is a multi-axial format, specifically designed for when complexity and speed are required, ultimately reducing overall tooling costs.

Example of HXR lay-up:

Please visit our website to request a print copy of our processing guide: www.toraytac.com/processing-guides

F

Toray AmberTool® Tooling Prepreg Processing Guide

Find this case study and more at www.toraytac.com/success-stories

Cure Capable Mandrel for Aerospace Structures Featured products: **Foray AmberTool® HX42**

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector

40

00

COMPRESSION MOLDING & BULK MOLDING COMPOUNDS

Introduction

LIGHTWEIGHT

than aluminum or titanium.

COMPLEX PART FABRICATION

OPTIMIZED LOAD PATHS

Parts can be optimized with ribs and stiffened assemblies to strengthen

LIGHTNING PROTECTION

INTEGRATED FASTENERS

OUR OBJECTIVES

High-strength Lightweight complex parts

structure

Rapid part forming

COMPRESSION MOLDING AND BULK MOLDING COMPOUNDS (BMC)

Toray manufactures and sells chopped thermoset and thermoplastic chopped carbon fiber bulk molding compounds (BMC) for compression molding. Compression molding is an enabling technology for the fabrication of complex composite parts for aerostructures, space, and satellites using bulk molding compounds (BMC). Resin matrices utilized include both thermosets and thermoplastics. Toray supplies chopped standard, intermediate, or high-modulus carbon fiber reinforcements.

In a highly controlled process, our bulk molding compounds are manufactured by using precise resin-infused carbon uni-directional (UD) tapes. The UD is chopped into fiber lengths ranging from 12 to 50 mm (1/2" to 2"). Longer fiber lengths generally provide higher strengths, while smaller length fibers allow more complex structural details to be molded into the part.

COMPRESSING MOLDING PART. **DESIGN AND FABRICATION**

The Toray CCS group specializes in the design, tooling, and fabrication of complex compression molded composite parts using BMC.

Compression molding offers an alternative to machining and hand lay-up for intricate geometry components. The process also delivers cost and weight savings by allowing the fabrication of composite parts in high volumes with short cycle times.

Aeronautics was neither an industry nor a science. It was a miracle.

Igor Sikorsky

- Special features such as lightning strike foils and integrated fasteners can be designed into the part. The utilization of chopped fiber BMC in compression molded parts often delivers higher strength and lighter weight than the metal parts they replace.
- Toray CCS's compression molded parts are found in a wide range of applications and industries, including satellites, launch vehicles, military and commercial aircraft, thermal management, and high-performance industrial applications.
- For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector App Store

www.toraytac.com/compressionmoldedparts Go to our online resource center for product data sheets and technical resources.

BULK MOLDING COMPOUNDS

Product Overview

BMC T	HERMO	DSET EP	POXY		AE	ROSPA	CE MAI	RKET SI	EGMEN	TS
					URES	SATELLITE			TERIORS	GH TEMP
	RESIN	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	AEROSTRUCI	SPACE AND S	LAUNCHERS	RADOMES	AIRCRAFT IN	ENGINES/ HI
MS-1A	Ероху	164°C (327°F)	15-30 minutes at 138°C (280°F) followed by post cure of 1-2 hours at 177°C (350°F)	 Chopped fiber epoxy BMC with high- modulus fiber 	0	0	0			
MS-1H	Ероху	191°C (375°F)	15-30 minutes at 138°C (280°F) followed by post cure of 1-2 hours at 177°C (350°F)	 Chopped fiber epoxy BMC with intermediate-modulus fiber 	0	0				
MS-4H	Ероху	191°C (375°F)	15-30 minutes at 138°C (280°F) followed by post cure of 1-2 hours at 177°C (350°F)	 Chopped fiber epoxy BMC with high- strength (standard-modulus) fiber 	0	0	0		0	

AEROSPACE MARKET SEGMENTS **BMC TORAY CETEX®** THERMOPLASTIC RESIN PEAK T_a PROCESSING TEMPERATURE **KEY PRODUCT CHARACTERISTICS** MC1100 PPS 0 0 0 0 PPS based BMC with high-strength 90°C 330°C (625°F) (194°F) (standard-modulus) fiber Fire retardant 0 MC1322 PEKK 162°C PEKK based BMC with high-strength 0 380°C (715°F) (standard-modulus) fiber (324°F) Excellent chemical and solvent resistance MC1200 PEEK 143°C 385°C (725°F) ▶ PEEK based BMC with high-strength 0 0 0 0 (standard-modulus) fiber (290°F) ► Fire retardant

COMPRESSION MOLDING APPLICATIONS

Toray chopped fiber bulk molding compounds (BMC) enable the cost-effective production of complex, extremely high-tolerance composite parts, typically to replace machined aluminum or titanium components for weight or cost reduction.

For instance, in the Bell-Boeing V-22 Osprey, compression molded parts have replaced honeycomb stiffened composite parts providing cost and productivity savings.

Toray can design the part, fabricate the tooling, and then move into full production to support your needs. For prototype parts or parts with limited production volumes, consider compression molded billet stock, which can be machined to shape.

A technical paper titled "Billet stock: Advantages and usages" offers valuable information. It can be found on our website under Compression Molded Parts. www.toraytac.com/compressionmoldedparts

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the **Toray TAC Product Selector**

www.toraytac.com Go to our online resource center for case studies and technical papers

44

To learn more, search for the following articles and case studies at **www.toray**tac.com

Top Five Questions Asked about Compression Molding Hear answers from an expert on the most asked questions about compression molding at www.toraytac.com/literature (Articles section)

Toray Compression Molding Design Guide To request a printed copy of this design guide, go to www.toraytac.com/processing-guides

BMC Billet Stock

Available products for cost-effective fabrication of a thick composite structure. www.toraytac/selector-guides (Product Highlights section)

Redesigning for Simplicity and Economy Read about the compression molded access door for the Bell-

Boeing V-22 Osprey at www.toraytac.com/literature (Articles section)

ULTRA-HIGH TEMPERATUR

MATERIALS FOR ULTRA-HIGH TEMPERATURE PERFORMANCE

Operating in temperature extremes of 260-371°C (500-700°F), Toray's line of cyanate esters, polyimides, and BMIs are available on a variety of carbon and ceramic reinforcements. These specialized materials replace titanium and other metals, offering design flexibility and significant weight savings.

Toray Advanced Composites through its partnership with Proof Research ACD are developing next generation, hightemperature prepregs for aerospace, defense, and structural applications. Under exclusive license, Toray is the supplier of prepregs made with PROOF® polyimide resins. PROOF® has additional resins including NRPE and variants of AFRPE polyimides that Toray can offer as prepregs.

TORAY'S HIGH-TEMPERATURE ADVANCED COMPOSITES ARE COMMONLY USED FOR:

- ▶ Jet engines, ducts, and stators
- Leading edges on hypersonic vehicles
- Heat shields and heat protection systems
- Rocket engine nozzles, thrusters, and powerplants
- Titanium replacement in aircraft and launch vehicles
- High-temperature composite tooling

Anon

OUR OBJECTIVES

High thermal stability

Replacement for titanium structures

Lightweight and thermally resistant

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector

www.toraytac.com Go to our online resource center for product data sheets and technical resources.

TORAY CYANATE ESTERS achieve high T_g with low moisture absorption, and are ideal for leading edges and heat shields on supersonic vehicles.

TORAY POLYIMIDE-BASED PREPREGS provide excellent thermal stability and can replace titanium for weight savings. The latest generation of military jet engines use Toray hightemperature materials to achieve weight savings.

ULTRA-HIGH TEMPERATURE Product Overview

THERMOSET PREPREGS

	RESIN MATRIX	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS
RS-8HT	BMI	203°C (397°F) or 285°C (545°F) with post cure	2 hours at 204°C (400°F) followed by 6 hours at 250°C (482°F)	 Excellent high-temperature thermal stability Good moisture resistance Available in RTM resin form
TC420	Cyanate Ester	176°C (349°F) or 348°C (658°F) with post cure	3 hours at 177°C (350°F) Optional post cure of 90 minutes at 260°C (500°F)	 Excellent thermal stability Epoxy-like processing with T_g of BMI Used on heatshields and supersonic leading edges
RS-51	Polyimide AFRPE-4	366°C (690°F)	Call for cure details	 Ultra-high service temperature for jet engine applications Based on PROOF's AFRPE-4
TC890	Polyimide 900HT	454°C (850°F)	2 hours at 371°C (700°F)	 Non MDA PMR-15 replacement Service temperature capability of 538°C (1000°F) Used in heat shields and ablatives Based on PROOF's 900HT

TORAY MICROPLY™ FILM ADHESIVES

	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS
TC310	Ероху	157°C (315°F)	2 hours at 177°C (350°F)	Ideal composite bonding film adhesive
TC4015	Cyanate Ester	176°C (349°F) or 321°C (610°F) with post cure	2 hours at 177°C (350°F) Optional post cure of > 60 minutes at 232°C (450°F)	 Excellent high-temperature properties Service temperature of 232°C (450°F) after post cure Compatible with TC420

TORAY MICROPLY™ SYNTACTICS

	RESIN MATRIX	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS
TCF4001	Cyanate Ester	176°C (349°F)	2 hours at 177°C (350°F) Optional post cure of 60-90 minutes at 232°C (450°F)	 Low-density foam 0.35-0.42 g/cc (22-26 pcf) Mechanical properties achieved through OOA/VBO processing
TCF4050	Cyanate Ester	176°C (349°F) or 232°C (450°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 60-90 minutes at 232°C (450°F)	 Expanding syntactic film/core splice Density of 0.28-0.55 g/cc (17-35 pcf) Tensile strength up to 260°C (500°F) Compatible with TC420 prepreg system
SF-4	BMI	295°C (563°F)	2 hours at 204°C (400°F), then 6 hours post cure at 250°C (452°F)	 Low-density syntactic film 0.62 g/cc (39 pcf) Compatible with RS-8HT and other BMI systems

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector

www.toraytac.com/hightemp Go to our online resource center for case studies and technical papers

51

CORE MATERIALS Introduction

HONEYCOMB CORE Product Overview

Toray Advanced Composites, UK (Langley Mill), has the largest independent core processing operation in Europe. Aluminum and Nomex® honeycomb are available in addition to Flex-Core® honeycomb. We hold extensive stock in-house for quick ordering. All orders are cut to customer's thickness specification and available with fast turnaround times.

HONEYCOMB CORE*

	CONFIGURATIONS	
Aluminum Honeycomb - Aerospace Grade	4.5-1/8-10N-5052 8.1-1/8-20N-5052	4.5-1/8-10N- 5056 6.1-1/8-15N- 5056 * 8.1-1/8-20N- 5056
Aluminum Honeycomb - Commercial Grade	1.8-3/4-25N-3003 5.2-1/4-25N-3003	
Nomex® Honeycomb Aerospace Grade	ANA-3.2-29 3.2 mm 2 ANA-3.2-48 3.2 mm 4 ANA-3.2-64 3.2 mm 6 ANA-4.8-48(OX) 4.8 m	29 kg/m³ 18 kg/m³ 54 kg/m³** nm 48 kg/m³
Nomex® Honeycomb - Commercial Grade	ANC-3.2-48 3.2 mm 4 ANC-4.8-32 4.8 mm 3 ANC-4.8-48 4.8 mm 4 ANC-4.8-48(OX) 4.8 m	18 kg/m³ 12 kg/m³ 18 kg/m³ nm 48 kg/m³
Aluminum Flex-Core®	5052/F800013N De 5052/F800024N De 5056 /F800014N De	ensity 4.3 ensity 8.0 ensity 4.3

Flex-Core® is a registered trademark of Hexcel. Nomex® is a registered trademark of E.I du Pont de Nemours and Company. *Offered from Langley Mill, UK. Additional grades can be sourced upon request, subject to minimum order quantities and ex

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector App Store Google play

um order quantities and extended lead times.

www.toraytac.com Go to our online resource center for case studies and technical papers

MicroPly[™]

FILMS AND PASTES

Valued in the industry for their lightweight, low-density, and high-compressive strength, Toray MicroPly syntactic core materials are high-performance resin films or pastes filled with hollow glass microspheres. Syntactic materials are used to fill honeycomb core or hollow spaces. They provide strength for fasteners and prevent moisture/fluid ingress. Core splices or foams represent syntactic materials that contain a blowing agent. Core splices expand to transfer load between two discrete honeycomb core pieces.

AEROSPACE SYNTACTICS

Toray MicroPly syntactic materials are produced in carbon-free environments, thus assuring electrically-pure products. They feature low dielectric loss and constant properties, and are compatible with Toray's award-winning line of radome prepregs. Toray MicroPly syntactics are valued for their low-density, high-strength, and low outgassing characteristics.

TORAY I	MICROP	PI FC	RODU(ORMAT	CT IS		MAR	KET S	EGME	NTS				
					TURES	SATELLITE			NTERIORS	IGH TEMP			
	RESIN MATRIX	DRY T _g onset	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	FILM	PASTE	EXPANDING	AEROSTRUC	SPACE AND	LAUNCH	RADOMES	AIRCRAFT II	ENGINES/HI
EM-3	Ероху	N/A	60 minutes at 121°C (250°F)	 High expansion (8-10 x) 0.64 g/cc (40 pcf) density 	0		0	0	0		0		
TCF4035	Ероху	140°C (284°F)	3 hours at 130°C (265°F)	 Low density 0.64 g/cc (40 pcf) Compatible with TC250, may be post cured for higher Tg 	0			0		0	0		
TCF4001	Cyanate Ester	176°C (349°F) optional post cure	2 hours at 177°C (350°F)	Low density 0.38 g/cc (24 pcf)		0		0	0		0		0
TCF4050	Cyanate Ester	176°C (349°F) or 232°C (450°F) with post cure	2 hours at 177°C (350°F)	 Expanding syntactic film/core splice Density of 0.28-0.55 g/cc (17-35 pcf) Compatible with TC420 prepreg system 	0		0	0	0		0		0
TCF4045	Ероху	180°C (356°F)	3 hours at 179°C (355°F)	 Excellent low dielectric loss and constant Density of 0.61 g/cc (38.5 pcf) 	0			0			0		
EM-5A	Cyanate Ester	204°C (400°F) optional post cure	2 hours at 177°C (350°F)	Expansion ratio of 4 x			0		0		0		
EX-1541	Cyanate Ester	227°C (441°F) or 240°C (464°F) with post cure	2 hours at 177°C (350°F), post cure of 2 hours at 232°C (450°F)	 Density of 0.16-0.38 g/cc (10-24 pcf) Good structural properties Low dielectric constant and loss 		0			0		0	0	0

TORAY	MICROP	PLICES	PI FC	RODU DRMA	CT TS		MAF	KET S	EGME	NTS			
									SATELLITE			ITERIORS	GH TEMP
	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS		PASTE	EXPANDING	AEROSTRUC	SPACE AND	LAUNCH	RADOMES	AIRCRAFT IN	ENGINES/HI
SF-5	Cyanate Ester	193°C (379°F) or 254°C (490°F) with post cure	149°C (300°F) to 177°C (350°F), post cure of 2 hours at 249°C (480°F)	 Density of 0.61 g/cc (38 pcf) Low dielectric constant and loss Compatible with Toray RS-3 				0	0		0		0
SF-4	BMI	295°C (563°F)	2 hours at 204°C (400°F), then 6 hours post cure at 250°C (452°F)	 Low density 0.62 g/cc (39 pcf) Compatible with RS-8HT and other BMI systems 	0		0	0	0		0		0

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the **Toray TAC Product Selector**

www.toraytac.com Go to our online resource center for case studies and technical papers

55

AEROSPACE PRODUCT SELECTOR

Introduction

ADVANCED COMPOSITE MATERIALS FOR AEROSPACE

The aerospace industry depends on supply chain innovation for new materials and processes. At Toray Advanced Composites, our focus on tailored systems, combined with our comprehensive laboratory and testing capabilities, allows rapid development, customization, and database development for our customers.

We add to that customer value with our broad experience in thermoset and thermoplastic matrices, various composite fibers, and part design.

Recognized in the industry for providing optimized fiber and resin solutions, we deliver innovative customer-oriented products to the market.

Our recognized brands include:

Cetex[®]

Toray Cetex for our thermoplastic composite materials

AmberTool[°]

Toray AmberTool for our composite tooling prepregs

MicroPly[™]

Toray MicroPly for our thermoset film and paste adhesives, syntactics and core splices, surfacing films, and peel plies

Overleaf are details of Toray's extensive advanced composite materials product range including:

- Thermoset UD tape and prepregs
- ▶ Thermoplastic UD tape, prepregs, and laminates
- Film adhesives
- Syntactics
- Resin transfer molding (RTM) resins
- Bulk molding compounds (BMC)
- Toray AmberTool[®] prepregs

AEROSPACE PRODUCT SELECTOR Thermoset Prepregs Epoxy

THERMO	ERMOSET EPOXY							PF	ROCESSI	NG				PR	ODUCT	ATTRIBUTE	S		PROD	UCT FOR	MATS	AE	ROSPAC	E MARKET	SEGMENT	rs
	RESIN MATRIX	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	FREEZER LIFE # MONTHS	00A/VB0	AUTOCLAVE	PRESS FORMING	AFP/ATL	POST CURABLE	TOUGHENED	FLAME RETARDANT	CHEMICAL RESISTANT	CORROSION RESISTANT	IMPACT RESISTANT HIGH TEMPERATURE PERFORMANCF	LOW MOSITURE Absorption	LIGHTNING STRIKE PROTECTION LOW DIELECTRIC LOSS & CONSTANT	UD TAPE	FABRIC PREPREG	RTL LAMINATE	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
BT250E-1	Ероху	125°C (257°F)	60 minutes at 121°C (250°F)	 MIL-R-9300 qualified BT250E-1FR is the flame retardant version 	30	12	0	0	0				(0	0			0	0	0		0		0		
BT250E-6	Ероху	131°C (268°F)	2 hours at 127°C (260°F)	 High-modulus system for rotor blades Complete FAA-conformed database on four product forms 	30	12	0	0	0				(0	0				0	0		0				
E721-FR	FR Epoxy	120°C (248°F)	60 minutes at 120°C (248°F)	 Direct lamination to honeycomb without the use of resin film Fire resistant under FAR 25.853 Appendix F material test criteria (ii) 	60	12	0	0	0			(0 (0	0					0					0	
EX-1522	Modified Epoxy	180°C (356°F)	2 hours at 177°C (350°F)	 Fire retardant, V-0 level Low moisture absorption Low outgassing, low dielectric constant and loss 	21	12		0	0			0 (0 (0	0		0	0	0	0	1	0	0	0		
RS-17B	Ероху	171°C (340°F)	2 hours at 177°C (350°F)	 Flexible cure system (135°C-177°C) Extensive space flight heritage More cost-effective versus cyanate ester systems 	30	12		0	0		0	0	(0	0		0		0	0			0			
RS-36 & RS-36-1	Ероху	181°C (358°F)	90 minutes at 177°C (350°F)	 Lower cost resin system compared to cyanate esters RS-36-1 is the higher T_g version 	30	12	0	0	0			0	(0	0		0		0	0			0			
TC250	Ероху	140°C (285°F) or 180°C (356°F) with post cure	60 minutes at 88°C (190°F), followed by 2 hours at 130°C (265°F).	 Toughened system Post curable for higher Tg NCAMP database on fabric version 	30	12	0	0	0		0	0	(0	0			0	0	0		0		0 0		
TC264-1	Ероху	124°C (255°F)	90 minutes at 118-127°C (245-260°F)	 Ideal for flame retardancy applications Ideal for ducting and composite panels 	30	12	0	0	0			0	0 (0	0				0	0					0	
TC275-1	Ероху	164°C (327°F) or 183°C (362°F) with 177°C (350°F) post cure	6 hours at 135°C (275°F) Optional post cure of 2 hours at 177°C (350°F)	 Low moisture uptake, high T_g retention Ideal system for large structure OOA/VBO processable 	14	12	0	0	0	0	0	0	(0	0	C	0		0	0		0	0	0		
TC275-1E NEW	Ероху	168°C (334°F)	6 hours at 135°C (275°F) optional post cure of 2 hours at 177°C (350°F)	 Longer out time version of TC275-1 Allows construction of thick or larger composites structures OOA/VBO processable 	21	12	0	0	0	0	0	0	(0	0	C	0		0	0		0	0	0		
TC350-1	Ероху	191°C (376°F)	2 hours at 177°C (350°F)	 Industry standard 177°C epoxy Good hot/wet properties Good CAI properties 221 MPa (32 ksi) 	45	12	0	0	0	0		0	(0	0	0 0	0		0	0	1	0		0		
TC380 NEW	Ероху	201°C (394°F)	2 hours at 177°C (350°F)	 Excellent open-hole compressive strength High CAI strength 289 MPa (42 ksi) Excellent hot/wet strength retention 	28	12	0	0		0		0	(0	0	0 0	0		0	0		0		0		
TC522 NEW	Modified Epoxy	189°C (372°F)	2 hours at 180°C (356°F)	 Outstanding compression after impact Low dielectric constant and loss Outstanding hot/wet properties 	21	12	0	0				0	(0	0	С	0	0	0	0				0		

AEROSPACE PRODUCT SELECTOR Thermoset Prepregs Cyanate Ester and Other Matrices

THERMO	MOSET CYANATE ESTER							PR	OCESSII	NG				PI	RODUCT	ATTRIBUTE	S		PROD	UCT FO	RMATS	A	EROSPA	CE MAR	KET SEGN	NENTS
TILIWO	RESIN	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	FREEZER LIFE # MONTHS	00A/VB0	AUTOCLAVE	PRESS FORMING	AFP/ATL	POST CURABLE	TOUGHENED	FLAME RETARDANT	CHEMICAL RESISTANT	CORROSION RESISTANT	IMPACT RESISTANT HIGH TEMPERATURE Debendmance	LOW MOSITURE ABSORPTION	LIGHTNING STRIKE PROTECTION LOW DIELECTRIC LOSS & CONSTANT	UD TAPE	FABRIC PREPREG	RTL LAMINATE	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS ENGINES/HIGH TEMP
BTCy-1	Cyanate Ester	190°C (374°F) or 238°C (461°F) with post cure	90 minutes at 177°C (350°F) Optional post cure of 2 hours at 232°C (450°F)	 Low moisture absorption Low dielectric constant and loss 	14	12		0			0		(0	0	0	0	0	0	0					0	
BTCy-1A	Cyanate Ester	185°C (365°F) or 207°C (405°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 60 minutes at 204°C (400°F)	 Toughened version of BTCy-1 Low void content with lower pressure cures Ideal for satellite or radome applications 	30	6		0			0	0	(0	0		0	0	0	0			0		0	
BTCy-2	Cyanate Ester	191°C (375°F)	90 minutes at 177°C (350°F)	 Toray lowest dielectric loss prepreg Ideal for high-energy radomes 	14	6		0					(0	0	0	0	0	0	0					0	
EX-1515	Cyanate Ester	121°C (249°F) or 174°C (345°F) with post cure	3 hours at 121°C (250°F). Optional post cure of 2 hours at 177°C (350°F)	 121°C (250°F) curing cyanate ester system for low-residual cure stresses Post curable for higher T_g 	21	12		0			0	0	(0	0		0	0	0	0			0		0	
RS-3/ RS-3C	Cyanate Ester	191°C (375°F) or 254°C (490°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 60 minutes at 232°C(450°F)	 Industry standard prepreg system for satellite structure Low dielectric constant and loss 	30	12	0	0			0	0	(0	0	0	0	0	0	0			0		0	
TC410	Cyanate Ester	112°C (234°F) or 181°C (358°F) with post cure	3 hours at 121°C (250°F) Optional post cure at 177°C (350°F)	 Lowest CTE, CME, outgassing Ideal system for stable structures 	7	6		0			0	0	(0	0		0	0	0	0			0			
TC420	Cyanate Ester	176°C (349°F) or 348°C (658°F) with post cure	3 hours at 177°C (350°F). Optional post cure at 260°C (500°F)	 Excellent thermal stability Epoxy-like processing with T_g of BMI Used on heatshields and supersonic leading edges 	21	6	0	0			0	0	(0	0	0	0	0	0	0		0	0	0	0	0

THERMOSET HIGH TEMPERATURE POLYIMIDE AND BMI

	RESIN MATRIX	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # Days	FREEZER LIFE # MONTHS	00A/VB0	AUTOCLAVE
RS-8HT	BMI	203°C (397°F) or 285°C (545°F) with post cure	2 hours at 204°C (400°F) followed by 6 hours at 250°C (482°F)	 Excellent high-temperature thermal stability Good moisture resistance 	30	6		0
RS-51	Polyimide AFRPE-4	366°C (690°F)	Call for cure details	 Ultra-high service temperature for jet engine applications 	10	6		0
TC890	Polyimide 900HT	454°C (850°F)	Call for cure details	 Non-MDA PMR-15 replacement Short-term service temperature capability of 538°C (1000°F) 	30	12		0
NRPE	Polyimide	371°C (700°F)	Call for cure details	 Better hot/wet properties versus AFR- PE-4E Lower pressure cure processing More robust processing of thick components verses AFR-PE-4E Post cure not required 	30	12		0

	PR	OCESSI	NG				PRO	DDUCT A	TTRIBU	TES			PROD	UCT FOR	MATS	ļ	AEROSP	ACE MAR	RKET SE	GMENTS	5
00A/VB0	AUTOCLAVE	PRESS FORMING	AFP/ATL	POST CURABLE	TOUGHENED	FLAME RETARDANT	CHEMICAL RESISTANT	CORROSION RESISTANT	IMPACT RESISTANT	HIGH TEMPERATURE PERFORMANCE	LOW MOSITURE Absorption	LIGHTNING STRIKE Protection	UD TAPE	FABRIC PREPREG	RTL LAMINATE	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
	0	0	0	0			0	0		0			0	0		0		0	0		0
	0						0	0		0			0	0		0			0		0
	0						0	0		0			0	0		0			0		0
	0						0	0		0			0	0		0		0	0		0

AEROSPACE PRODUCT SELECTOR Toray Cetex® Thermoplastic Prepregs and Laminates

Cetex[®]

				PROCE	SSING				PRO	DUCT A	TTRIBUT	TES			PRODU	UCT FORI	MATS	ļ	AEROSP	ACE MARKE	T SEGME	NTS			
	RESIN	PEAK T _g	PROCESSING TEMPERATURE	KEY PRODUCT CHARACTERISTICS	WELDABLE/JOINTING	AUTOCLAVE	PRESS FORMING	AFP/ATL	DURABILITY/ Toughness	FLAME RETARDANT	CHEMICAL RESISTANT	CORROSION RESISTANT	IMPACT RESISTANT	HIGH TEMPERATURE PERFORMANCE	LOW MOSITURE Absorption	MECHANICAL Performance	UD TAPE	FABRIC PREPREG	RTL LAMINATE	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	KADUMES Andre Interiors	AIRCRAFT INTERIORS	AERO ENGINES
TC925 FST	PC	153°C (307°F)	260°C (500°F)	 Designed for interior applications with good FST properties (OSU < 25/25) Value-oriented solution Good chemical resistance 	0	0	0		0	0		0	0		0	0		0	0				C	2	
TC1000 Design	PEI	215°C (419°F)	315°C (600°F)	 Laminates are available to customer specifications Lower cost option than Premium where OEM specifications are not required 	0	0	0		0	0	0	0	0	0	0	0		0	0				C)	
TC1000 Premium	PEI	215°C (419°F)	315°C (600°F)	 Excellent FST performance (OSU < 15/15) Moderate solvent resistance Widely used in aircraft interiors, qualified to OEM specifications 	0	0	0		0	0	0	0	0	0	0	0		0	0	0			C	2	0
TC1100	PPS	90°C (194°F) T _m 280°C (536°F)	320°C (608°F)	 Microcrack free Low flammability, achieves 35/35 for OSU performance Good CAI properties 229 MPa (33.2 ksi) Ideal for leading edges, beams, clips, and floor panels 	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0			(>	0
TC1200	PEEK	143°C (290°F) T _m 343°C (649°F)	385°C (725°F)	 Good high-temperature properties Very good CAI properties 265 MPa (38.4 ksi) Ideal for structural applications 	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			C)	0
TC1225	Engineered PAEK	147°C (297°F) T _m 305°C (581°F)	325-350°C (615-662°F)	 Lower processing temperature with good high-temperature performance May be overmolded with PEEK for final part Very good CAI properties 282 MPa (40.9 ksi) Ideal for structural applications 	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			C)	0
TC1320	PEKK	159°C (318°F) T _m 337°C (639°F)	371°C (700°F)	 Outstanding solvent and impact resistance Very high CAI properties 337 MPa (48.9 ksi) Ideal for structural applications Lower processing temperature material 	0	0	0	0	0	0	0	0	0	0	0	0	0			0					0

MicroPly[™]

POST CURABLE

²/ATL

GHENED

0

0

0

PROCESSING

SS FOF

0

PROCESSING

ITOCLAVE

0

0 0 0

0 0 0

00A / VB0

0

TORAY MICROPLYTM FILM ADHESIVES EPOXY

	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	FREEZER LIFE # MONTHS
RS-15H	Ероху	99°C (211°F)	6 hours at 93°C (200°F) Alternate cures are available	Low-temperature curing adhesive	30	12
TC263	Ероху	110°C (230°F)	2 hours at 121°C (250°F)	 High peel strength Ideal for metal or composite bonding 	21	12
TC310	Ероху	157°C (315°F)	2 hours at 177°C (350°F)	Ideal composite bonding film adhesive	21	12

TORAY MICROPLY™ FILM ADHESIVES CYANATE ESTER

									NI		E.		22	ES	L RES	
	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	FREEZER LIFE # MONTHS	00A / VB0	AUTOCLAVE	PRESS FORM	AFP/ATL	POST CURAE	TOUGHENED	FLAME RETA	CHEMICAL R	CORROSION	
EX-1516	Cyanate Ester	126°C (258°F)	5 hours at 121°C (250°F)	Compatible with Toray EX-1515 prepreg	21	12	0	0	0		0	0		0	0	
EX-1543	Cyanate Ester	191°C (376°F) or 211°C (412°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 2 hours at 204°C (400°F)	 Low-shrinkage cyanate ester film adhesive Low outgassing 	14	6	0	0	0		0	0		0	0	
RS-4A	Cyanate Ester	195°C (383°F) or 238°C (460°F) with post cure	2 hours at 177°C (350°F) Optional post cure of 1.5-2 hours at 232°C (450°F)	 Moisture-resistant cyanate ester film adhesive Compatible with 177°C (350°F) curing cyanate ester prepregs 	14	6	0	0	0		0	0		0	0	
TC4015	Cyanate Ester	176°C (349°F) or 321°C (610°F) with post cure	2 hours at 177°C (350°F) Optional post cure of > 60 minutes at 232°C (450°F)	 Excellent high-temperature properties Compatible with TC420 	14	6	0	0	0		0	0		0	0	

	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	TACK LIFE # DAYS	FREEZER Life # Months
TC235SF-1	Epoxy Surfacing Film	119°C (246°F)	60 minutes at 121°C (250°F)	 Excellent protective surface finish Available with embedded lightning strike foils Reduces shop floor finishing for productivity savings 	30	12

	P	ROCESSIN	IG				Pi	RODUCT A	TTRIBUT	ES				AEROS	PACE MA	RKET SEG	MENTS	
00A / VB0	AUTOCLAVE	PRESS FORMING	AFP/ATL	POST CURABLE	TOUGHENED	FLAME RETARDANT	CHEMICAL RESISTANT	CORROSION RESISTANT	IMPACT RESISTANT	HIGH TEMPERATURE Performance	LOW MOSITURE ABSORPTION	LIGHTNING STRIKE Protection	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
0	0	0			0		0	0				0	0					

PRODUCT ATTRIBUTES

0 0

0 0

FLAME RETARDAN

ICAL RES

0

Pł	RODUCT A	TTRIBUTI	ES				AEROSE	PACE MAI	RKET SEG	MENTS	
	CORROSION RESISTANT	IMPACT RESISTANT	HIGH TEMPERATURE Performance	LOW MOSITURE Absorption	LIGHTNING STRIKE Protection	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
	0					0	0		0		
1	0					0	0	0	0	0	
)	0					0	0	0	0		0

				AEROSI	PACE MAI	RKET SEG	MENTS	
PERFORMANCE	LOW MOSITURE Absorption	LIGHTNING STRIKE Protection	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
	0			0		0		
	0			0		0		
	0			0		0		
0	0		0	0	0	0		0

MicroPly[™]

TORAY MICROPLY™ SYNTACTICS EPOXY

	RESIN MATRIX	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	FREEZER LIFE # MONTHS
EM-3	Ероху	~116°C (240°F)	60 minutes at 121°C (250°F)	 High expansion (8-10 x) 0.64 g/cc (40 pcf) density T_g estimated from base resin data 	14	12
TCF4035	Ероху	140°C (284°F)	2 hours at 130°C (265°F)	 Low density 0.64 g/cc (40 pcf) Compatible with TC250, may be post cured for higher Tg 	21	12
TCF4045	Modified Epoxy	180°C (356°F)	3 hours at 179°C (355°F)	 Excellent low dielectric loss and constant Density of 0.61 g/cc (38.5 pcf) 	14	6

TORAY MICROPLY™ SYNTACTICS CYANATE ESTER

	RESIN MATRIX	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	FREEZER LIFE # MONTHS	00A/VB0
EM-5A	Cyanate Ester	204°C (400°F) optional post cure	2 hours at 177°C (350°F)	Expansion ratio of 4 x	28	12	0
EX-1541	Cyanate Ester	227°C (441°F) or 240°C (464°F) with post cure	2 hours at 177°C (350°F), post cure of 2 hours at 232°C (450°F)	 Density of 0.16-038 g/cc (10-24 pcf) Good structural properties Low dielectric constant and loss 	14	6	
SF-5	Cyanate Ester	193°C (379°F) or 254°C (490°F) with post cure	2 hours at 177°C (350°F), post cure of 2 hours at 249°C (480°F)	 Density of 0.61 g/cc (38 pcf) Low dielectric constant and loss Compatible with Toray RS-3 	14	6	0
TCF4001	Cyanate Ester	176°C (349°F) optional post cure	2 hours at 177°C (350°F) post cure of 60-90 minutes at 232°C (450°F)	 Low density 0.38 g/cc (24 pcf) Compatible with TC420 prepregs 	14	6	0
TCF4050	Cyanate Ester	176°C (349°F) or 232°C (450°F) with post cure	2 hours at 177°C (350°F) post cure of 60 minutes at 232°C (450°F)	 Expanding syntactic film/core splice Density of 0.28-0.55 g/cc (17-35 pcf) Compatible with TC420 prepress 	7	6	0

TORAY MICROPLY™ SYNTACTICS OTHER THERMOSET MATRICES

	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	FREEZER LIFE # MONTHS
SF-4	BMI	295°C (563°F)	2 hours at 204°C (400°F), then 6 hour post cure at 250°C (482°F)	 Low density 0.62 g/cc (39 pcf) Compatible with RS-8HT and other BMI systems 	14	6

	PR	OCESSI	NG				PRO	DDUCT A	TTRIBU	TES			PROD	UCT FOR	MATS	1	AEROSP	ACE MA	RKET SE	GMENTS	5
00A / VB0	AUTOCLAVE	PRESS FORMING	AFP/ATL	POST CURABLE	TOUGHENED	FLAME RETARDANT	CHEMICAL RESISTANT	CORROSION RESISTANT	IMPACT RESISTANT	HIGH TEMPERATURE Performance	LOW MOSITURE Absorption	LIGHTNING STRIKE Protection	FILM	PASTE	EXPANDING	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
	0				0		0	0					0		0	0	0		0		
0	0			0	0		0	0					0			0		0	0		
0	0				0		0	0					0			0			0		

PROCESSING							PRC	DUCT A	TTRIBU	TES			PRODU	JCT FOR	MATS	ļ	AEROSP	ACE MAR	RKET SE	GMENTS	5
00A/VB0	AUTOCLAVE	PRESS FORMING	AFP/ATL	POST CURABLE	TOUGHENED	FLAME RETARDANT	CHEMICAL RESISTANT	CORROSION RESISTANT	IMPACT RESISTANT	HIGH TEMPERATURE Performance	LOW MOSITURE ABSORPTION	LIGHTNING STRIKE Protection	FILM	PASTE	EXPANDING	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
0	0			0	0		0	0					0		0		0		0		
	0	0		0						0	0			0			0		0	0	0
0	0	0		0	0					0	0		0			0	0		0		0
0	0			0			0	0		0	0			0		0	0		0		0
0	0			0	0		0	0		0	0		0		0	0	0		0		0

	PROD	UCT FOR	MATS	1	AEROSP	ACE MAI	RKET SE	GMENTS	5
LIGHTNING STRIKE PROTECTION	FILM	PASTE	EXPANDING	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
	0		0	0	0		0		0

AEROSPACE PRODUCT SELECTOR Resin Transfer Molding and Bulk Molding Compounds

RTM RESINS

	RESIN	DRY T _g ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	POT LIFE
EX-1510	Cyanate Ester	193°C (380°F)	2 hours at 177°C (350°F)	 Low viscosity at room temperature of 150 cPs Post curable 	4 hrs
EX-1545	Cyanate Ester	173°C (345°F)	2 hours at 177°C (350°F)	 Toughened resin system with low viscosity of 140 cPs at 43°C (110°F) Long pot life for complex parts 	24 hrs
RS-16	Cyanate Ester	167°C (332°F) or 231°C (448°F) with post cure	2 hours at 135°C (275°F)	 Low-temperature cure resin system Post curable for higher T_g 	4 hrs
RS-50	Ероху	203°C (397°F)	2 hours at 177°C (350°F)	 Toughened epoxy for structural applications Low minimum viscosity of 23 cPs 	4 hrs

BMC THERMOSET

	RESIN MATRIX	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	FREEZER LIFE # MONTHS
MS-1A	Ероху	164°C (327°F)	15-30 minutes at 138°C (280°F) followed by post cure of 1-2 hours at 177°C (350°F)	 Chopped fiber epoxy BMC with high-modulus (HM) fiber 	14	6
MS-1H	Ероху	191°C (375°F)	15-30 minutes at 138°C (280°F) followed by post cure of 1-2 hours at 177°C (350°F)	 Chopped fiber epoxy BMC with high-modulus (HM) fiber 	14	6
MS-4H	Ероху	191°C (375°F)	15-30 minutes at 138°C (280°F) followed by post cure of 1-2 hours at 177°C (350°F)	 Chopped fiber epoxy BMC with high-strength standard-modulus (HS) fiber 	14	6

PROCESSING PRODUCT ATTRIBUTES TEMPERATUR ORMANCE CAL RES HENED RETA 00A / VB0 POST CUR FLAME F HS 0 0 0 0 0 0 0 0 0 0 0 0

ENED

CUR

0

0 0

0

RETA

PROCESSING

0

0

0

0

00A / VB0

PRODUCT ATTRIBUTES

0 0 0 0

0 0

0 0 0

H TEMPERATURI Formance

H H

0

0 0

	PROCE	SSING				PR	ODUCT A	TTRIBU	TES			PROD	UCT FOR	MATS		AEROSP	ACE MA	RKET SE	GMENTS	
00A / VB0	AUTOCLAVE	PRESS FORMING	AFP/ATL	TOUGHENED	FLAME RETARDANT	CHEMICAL RESISTANT	CORROSION RESISTANT	IMPACT RESISTANT	HIGH TEMPERATURE PERFORMANCE	LOW MOSITURE Absorption	LIGHTNING STRIKE Protection	HS	MI	MH	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
		0		0	0	0	0	0		0	0	0			0	0	0		0	
		0		0	0	0	0	0	0	0	0	0			0	0	0		0	
		0		0	0	0	0	0	0	0		0			0				0	

BMC TORAY CETEX®

	RESIN MATRIX	PEAK T _g	PROCESSING TEMPERATURE	KEY PRODUCT CHARACTERISTICS
MC1100	PPS	90°C (194°F)	330°C (625°F)	 PPS based BMC with HS and IM fibers Fire retardant
MC1200	PEEK	143°C (290°F)	385°C (725°F)	 PEEK based BMC with HS and IM fibers Fire retardant
MC1322 NEW	РЕКК	162°C (324°F)	380°C (715°F)	► PEKK based BMC with HS fibers

	PROD	UCT FOR	MATS	ļ	AEROSP/	ACE MAI	RKET SE	GMENTS	\$
LIGHTNING STRIKE Protection	1 PART	2 PART	RTL LAMINATE	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
		0		0	0				0
		0			0		0		
		0			0		0		
	0			0		0			

	PROD	UCT FOR	MATS	ļ	AEROSPA	ACE MAI	RKET SE	GMENTS	5
LIGHTNING STRIKE Protection	HS	W	MH	AEROSTRUCTURES	SPACE AND SATELLITE	LAUNCH	RADOMES	AIRCRAFT INTERIORS	ENGINES/HIGH TEMP
0			0	0	0	0			
0		0		0	0				
0	0			0	0	0		0	

AEROSPACE PRODUCT SELECTOR Toray AmberTool®

AmberTool[®]

τοραν Δ	MRERTO			ING PREPREGS					PR	DCESSING				PRO	DUCT A	TRIBUTES		PROD	UCT FOR	MATS	А	EROSPA	CE MARI	KET SEG	MENTS	
							I			(7)			ANT	STANT	SISTANT	ANT TURE	IKE		5		IES	ELLITE			RIORS	IEMP
	RESIN	DRY Tg ONSET	CURE TIME AND TEMPERATURE	KEY PRODUCT CHARACTERISTICS	OUT LIFE # DAYS	FREEZER LIFE # MONTHS		00A / VB0	AUTOCLAVE	PRESS FORMING AFP/ATL	POST CURABLE	TOUGHENED	FLAME RETARD/	CHEMICAL RESI	CORROSION RES	IMPACT RESIST/ HIGH TEMPERAT PERFORMANCE	LOW MOSITURE Absorption Lightning Stri Protection	UD TAPE	FABRIC PREPRE	RTL LAMINATE	AEROSTRUCTUR	SPACE AND SAT	LAUNCH	RADOMES	AIRCRAFT INTEF	ENGINES/HIGH 1
HX40	Ероху	203°C (397°F)	12 hours at 65°C (149°F)	 Large tooling applications High-temperature performance 	8	6			0		0			0	0				0		0	0	0	0		
HX42	Ероху	200°C (392°F)	8 hours at 60°C (140°F)	 Proven system for aerospace Shorter cure schedule at lower temperatures Excellent surface finish 	5	6			0		0			0	0				0		0	0	0	0		
TC40	BMI	213°C (415°F)	6 hours at 182°C (360°F), post cure 2 hours at 210°C (410°F)	 High service temperature Excellent thermal stability 	14	6			0		0			0	0	0			0		0	0	0	0		

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector

www.toraytac.com Go to our online resource center for case studies and technical papers

71

LOCATIONS AND CAPABILITIES

CERTIFICATIONS SOLUTIONS ■ ISO 14001:2015 ■ ISO 45001:2018 ISO 9001:2015 AS9100D Thermoplastic composites Thermoplastic laminates Parts manufacture Sales office Thermoset composites Carbon-free manufacturing 5 Fairfield - California, United States Morgan Hill - California, United States Camarillo - California, United States Nottingham, United Kingdom • • • Nijverdal, The Netherlands Toulouse, France Guangzhou, China Taichung, Taiwan

TORAY ADVANCED COMPOSITES 18255 Sutter Blvd. Morgan Hill, CA 95037, USA Tel: +1 408 465 8500 explore@toraytac-usa.com

TORAY ADVANCED COMPOSITES G. van der Muelenweg 2

7443 RE Nijverdal, NL Tel: +31 (0)548 633 933 explore@toraytac-europe.com **TORAY ADVANCED COMPOSITES**

2450 Cordelia Road Fairfield, CA 94534, USA Tel: +1 707 359 3400 explore@toraytac-usa.com

TORAY ADVANCED COMPOSITES Amber Drive, Langley Mill Nottingham, NG16 4BE, UK Tel: +44 (0)1773 530899 explore@toraytac-europe.com

For more product information such as product data sheets, case studies, or technical papers, please use the following resources:

Search for the Toray TAC Product Selector

www.toraytac.com Go to our online resource center for case studies and technical papers

©2019 Toray Advanced Composites. All data given is based on representative samples of the materials in question. Since the method and circumstances under which these materials are processed and tested are key to their performance, and Toray Advanced Composites has no assurance of how its customers will use the material, the corporation cannot guarantee these properties. Toray®, (Toray) AmberTool®, (Toray) Cetex®, (Toray) MicroPly™, and all other related characters, logos, and trade names are claims and/or registered trademarks of Toray Industries Inc. and/or its subsidiary companies in one or more countries. Use of trademarks, trade names, and other IP rights of Toray Industries Inc. without prior written approval by such is strictly prohibited.

Toray Advanced Composites