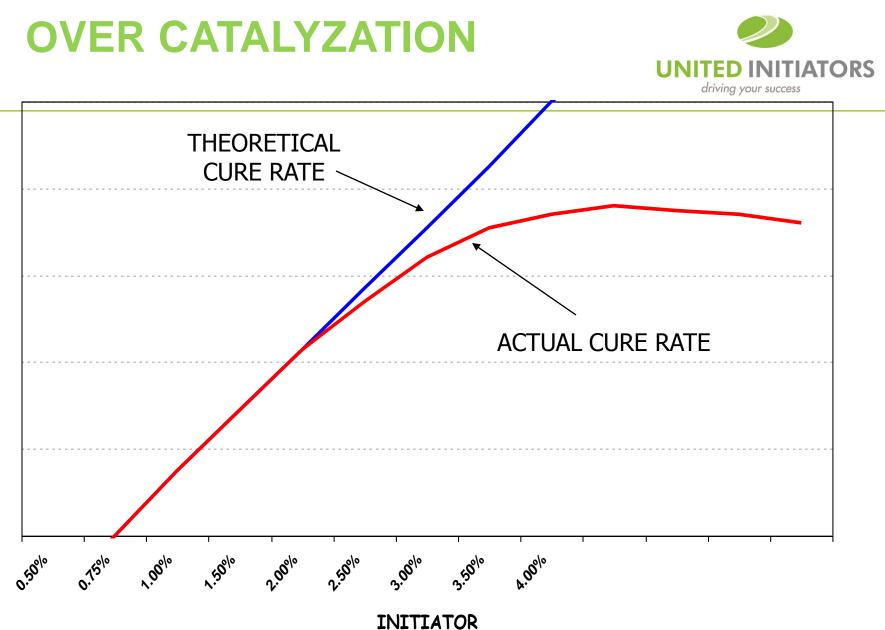
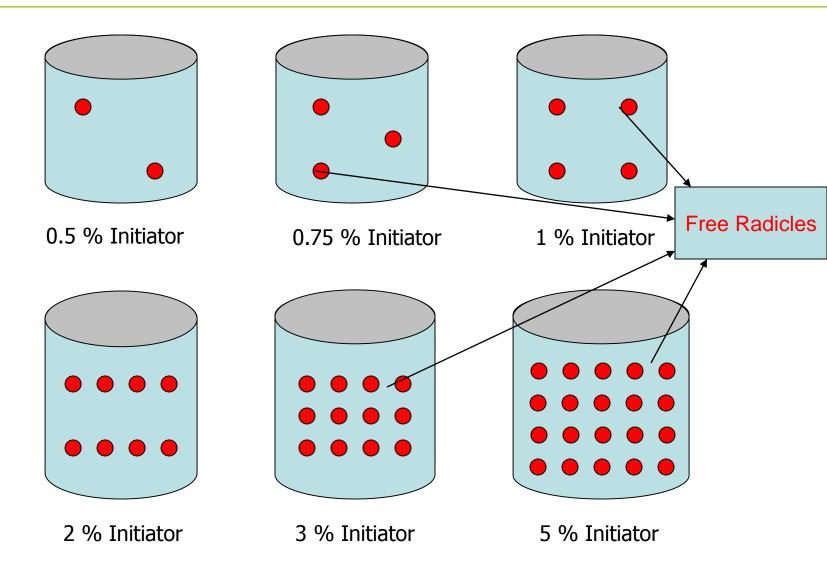


FACTORS EFFECTING RESIN AND GEL COAT CURE.



Factors Affecting the Cure of Gel Coats and Resin Systems.

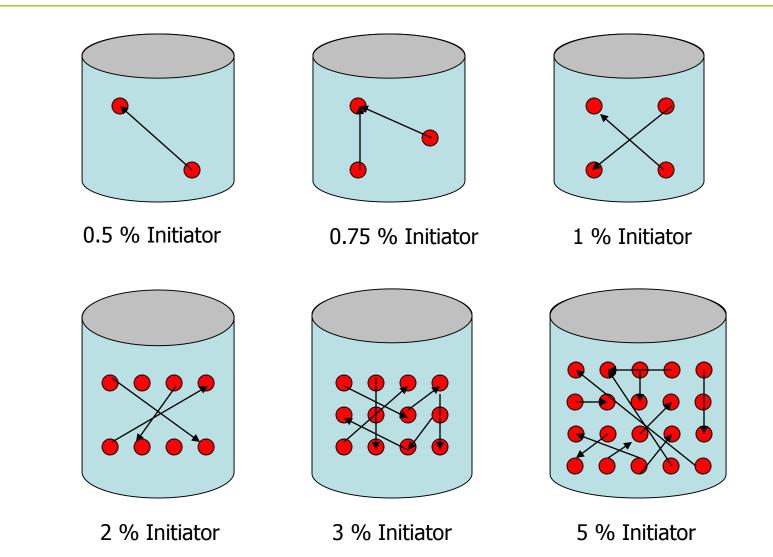
- 1) Temperature levels operating temperatures should be between 60°F and 85°F.
- 2) Incorrect Initiator or promoter levels usually applicators reduce the catalyst (Initiator) levels too low to counter high temperatures and too much when it is too cold .
- 3) Incorrect Initiator selection most catalysts (Initiators) found in the market are too high in hydrogen peroxide content.



CURE

U

UNDER/OVER CATALYZATION



FREE RADICLE TERMINATION

- Free radicals are charged particles, formed by the chemical reaction between the Promoter (which is the true catalyst) and the Initiator.
- When they collide with each other they terminate themselves and do not take any further part in the cross linking reaction.
- Terminated free radicals can become active again if they become in contact with another free radical.
- Therefore we have a shutting down and restarting process happening, particularly when there is a high concentration of Promoter or Initiator.

UNDER/OVER CATALYZATION UNITED INITIATORS

Gel Coat Faults

UNDER CATALYSATION

>Alligatoring/Wrinkling.

Print Through (Fiber Pattern).

Sagging or Running (when gel coat is applied too thick).

>Dull Parts/Softness (Poor Mixing).

➢ Premature Yellowing.

➢ Premature Chalking.

≻Fading of Color.

➤Water Spotting.

Checking (Mud Cracking).

OVER CATALYSATION

>Pinholes/Craters

Delamination (combination of high Initiator levels and too high gel coat film build).

Pre-release (especially in combination with high temperatures).

➢Porosity.

Spot Blisters (droplets of Initiator from overspray- external mix equip.).

≻Chalking.

Dull Parts.

Print Through.

Resin Laminating Faults

UNDER CATALYSATION

- Shrinking/Warping (After part has been pulled).
- Print Through (After part has been pulled).
- ≻Resin Tearing.
- ≻Soft Spots.
- >Low Mechanical Strengths.

OVER CATALYSATION

- Color Variation (High Initiator level combined with poor mixing).
- >De-lamination.
- ≻Shrinkage.
- ≻High Exotherm.
- ≻Hot Spots.
- ➢Resin Cracking.
- ≻Air Bubbles.
- ➢Poor Wet Out.
- >Low Mechanical Strengths.

REMEMBER A FAST GEL TIME **DOES NOT MEAN A GOOD** OR **FULL CURE**

15 DEGREE RULE

FOR EVERY 15 DEGREE (F) CHANGE IN MOLD TEMPERATURE,

THE GEL TIME WILL

- DOUBLE WHEN THE MOLD OR AMBIENT TEMPERATURE DROPS.
- HALVE WHEN THE MOLD TEMPERAURE INCREASES.

ELIMINATING THE PROBLEMS

- Always work with the correct Initiator levels.
 - 1.5 to 2.25% for Gel Coats.
 - 1 to 2.5% for Resins.
- Work in the Middle of these parameters.
- If you cannot work in the above then use a variant of the Gel Coat and Resin that will work.
- Look at using an alternative Initiator that works in your temperature requirements.

MEKP ACTIVE INGREDIENTS

1. Hydrogen Peroxide – This affects the Gel Time only.

1.

- 2. MEKP Monomer This completes the Gel Time and starts the cure, so it has a major affect on the green stage cure.
- **3. MEKP Dimer** This completes the cure (Absolutely essential for optimal cure of iso-phthalic and VE based resins).
- 4. The total of the three above reactive components, can not exceed 9.0% AO (active oxygen). This equates to approximately 37% of the total volume contained in a 4 kilogram bottle.

1 + 2 + 3 < 9.0% AO

Last to react is the MEKP Dimer

2nd to react is the MEKP Monomer

1st to react is the Hydrogen Peroxide

THE EFFECTS OF HYDROGEN PEROXIDE (H₂O₂) IN MEKP FORMULAS

- **1.** The more Hydrogen Peroxide (H_2O_2) the shorter the working time (gel time).
- **2.** The more H_2O_2 the earlier the rise in viscosity.
- **3.** The more H_2O_2 the more chance of porosity.
- 4. We need some H_2O_2 to ensure the reaction can start when the temperatures we operate in are low.

Rule on All UI-SPI Norox MEKPs

Specific Density

	NOROX®							
	MEKP-9	MEKP-9H	MEKP-900	MEKP-925	MEKP-925H	MEKP-30		
Active Oxygen, %	8.9 – 9.0	8.9 – 9.0	8.9 – 9.0	8.9 – 9.0	8.9 – 9.0	5.4 – 5.5		
Form	\leftarrow Liquid \rightarrow							
Color	$\leftarrow \text{Water White} \rightarrow $							
Specific Gravity @25/4°C	1.1	1.1	1.1	1.1	1.1	1.15		
Viscosity, cps @25°C	15 – 16	15 - 16	15 - 16	15 - 16	15 - 16	18		
Flash Point (SETA C.C.), min	← 170°F →							
Hydrogen Peroxide, %	0.8 – 1.0	0.4 – 0.6	1.8 – 2.0	1.2 – 1.4	0.1 – 0.4	0.5 – 0.6		
Monomer / Dimer Ratio	High / Low	High / Low	High / Low	Med / High	Med / High	High / Low		
Soluble in		← 0	xygenated O	rganic Solven	ts →			
Insoluble in			← Wa	ater \rightarrow				

More active ingredients per pump stroke – 0.1% adjustment.

Gel Coat application – better mixture in external spray guns.

Vinyl Ester Laminating Resin

	100g Mass			20g Mass	BARCOL				
Sample	%	Gel	Cure	Peak	Peak	1 hr.	3 hrs.	6 hrs.	24 hrs.
Name	Catalyst	Time	Time	Temp.	Temp.	BARCOL	BARCOL	BARCOL	BARCOL
MEKP-9	1.50%	13.1	10.0	349°F	293°F	25-30(D)	55-60(5)	65-70(5)	10-15(4)
MEKP-925	1.50%	13.0	8.1	354°F	312°F	50-55(D)	60-65(5)	65-70(5)	15-20(4)
MEKP-30 *	1.50%	21.6	14.9	332°F	266°F	N/A	50-55(D)	55-60(5)	05-10(4)
MCP	1.50%	40.1	48.1	290°F	090°F	N/A	0-5(D)	50-55(D)	20-25(4)
MCP-21	1.50%	35.6	44.5	296°F	089°F	N/A	0-5(D)	45-50(D)	20-25(4)
MCP-75	1.50%	29.7	33.2	313°F	092°F	N/A	5-10(D)	55-60(D)	15-20(4)
771	1.50%	33.1	33.4	313°F	095°F	N/A	0-5(D)	50-55(D)	20-25(4)
CHP	1.50%	70.6	66.7	241°F	088°F	N/A	N/A	60-65(5)	25-30(4)

* MEKP Actual Percentage of active ingredient = 0.9%

MEKP/CHP Blends

Benefits:

- Dimensional Stability
- Low Exotherm
- Thicker parts
 - Consolidation of steps
- Long gel times
- Better cure in 24 hrs.

Fastest to slowest

- MEKP
- HDP-75
- MCP-75
- MCP-21
- MCP

Other Specialty Blends

- **750 & 757**
 - Azox /CHP great for close molding and thin skins
 - Dimensional stability
- CHM-50
 - Thick putty applications reduction of exotherms
 - Excellent cure on VE tooling Gelcoats
 - Zero foaming in VE resins
- Azox/MEKP
 - Snap cure with out effecting gel times
- MEC
 - Manufacturing consistency
 - Less sensitive to temperature swings and high humidity

For more information contact :

www.united-initiators.com info@united-in.com 800-231-2702

Thank you!